RexBERT-base-embed-pf-v0.3

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Maximum Sequence Length: 2048 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 2048, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the ๐Ÿค— Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'The weather is lovely today.',
    "It's so sunny outside!",
    'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[0.9961, 0.8477, 0.8750],
#         [0.8477, 0.9961, 0.8047],
#         [0.8750, 0.8047, 1.0078]], dtype=torch.bfloat16)

Training Details

Framework Versions

  • Python: 3.12.8
  • Sentence Transformers: 5.1.1
  • Transformers: 4.53.3
  • PyTorch: 2.7.0
  • Accelerate: 1.10.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.4

Citation

BibTeX

Downloads last month
10
Safetensors
Model size
149M params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support