Sentence Similarity
sentence-transformers
Safetensors
modernbert
feature-extraction
dense
ecommerce
e-commerce
retail
marketplace
shopping
amazon
ebay
alibaba
google
rakuten
bestbuy
walmart
flipkart
wayfair
shein
target
etsy
shopify
taobao
asos
carrefour
costco
overstock
pretraining
encoder
language-modeling
foundation-model
text-embeddings-inference
RexBERT-base-embed-pf-v0.3
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 2048 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 2048, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'The weather is lovely today.',
"It's so sunny outside!",
'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[0.9961, 0.8477, 0.8750],
# [0.8477, 0.9961, 0.8047],
# [0.8750, 0.8047, 1.0078]], dtype=torch.bfloat16)
Training Details
Framework Versions
- Python: 3.12.8
- Sentence Transformers: 5.1.1
- Transformers: 4.53.3
- PyTorch: 2.7.0
- Accelerate: 1.10.0
- Datasets: 3.6.0
- Tokenizers: 0.21.4
Citation
BibTeX
- Downloads last month
- 10