TiTan-Llama-3.2-1B - GGUF Quantized
Quantized GGUF versions of TiTan-Llama-3.2-1B for use with llama.cpp and other GGUF-compatible inference engines.
Original Model
- Base model: unsloth/Llama-3.2-1B
- Fine-tuned model: theprint/TiTan-Llama-3.2-1B
- Quantized by: theprint
Available Quantizations
TiTan-Llama-3.2-1B-f16.gguf
(2364.7 MB) - 16-bit float (original precision, largest file)TiTan-Llama-3.2-1B-q3_k_m.gguf
(658.8 MB) - 3-bit quantization (medium quality)TiTan-Llama-3.2-1B-q4_k_m.gguf
(770.3 MB) - 4-bit quantization (medium, recommended for most use cases)TiTan-Llama-3.2-1B-q5_k_m.gguf
(869.3 MB) - 5-bit quantization (medium, good quality)TiTan-Llama-3.2-1B-q6_k.gguf
(974.5 MB) - 6-bit quantization (high quality)TiTan-Llama-3.2-1B-q8_0.gguf
(1259.9 MB) - 8-bit quantization (very high quality)
Usage
With llama.cpp
# Download recommended quantization
wget https://huggingface.co/theprint/TiTan-Llama-3.2-1B-GGUF/resolve/main/TiTan-Llama-3.2-1B-q4_k_m.gguf
# Run inference
./llama.cpp/main -m TiTan-Llama-3.2-1B-q4_k_m.gguf \
-p "Your prompt here" \
-n 256 \
--temp 0.7 \
--top-p 0.9
With other GGUF tools
These files are compatible with:
- llama.cpp
- Ollama (import as custom model)
- KoboldCpp
- text-generation-webui
Quantization Info
Recommended: q4_k_m
provides the best balance of size, speed, and quality for most use cases.
For maximum quality: Use q8_0
or f16
For maximum speed/smallest size: Use q3_k_m
or q4_k_s
License
apache-2.0
Citation
@misc{titan_llama_3.2_1b_gguf,
title={TiTan-Llama-3.2-1B GGUF Quantized Models},
author={theprint},
year={2025},
publisher={Hugging Face},
url={https://huggingface.co/theprint/TiTan-Llama-3.2-1B-GGUF}
}
- Downloads last month
- 159
Hardware compatibility
Log In
to view the estimation
3-bit
4-bit
5-bit
6-bit
8-bit
16-bit
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support