Built with Axolotl

See axolotl config

axolotl version: 0.10.0.dev0

base_model: google/gemma-3-12b-it

model_config:
  attn_implementation: eager

overrides_of_model_kwargs:
  attn_implementation: eager

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: thesantatitan/pixelprose-sample-5k
    type: chat_template
    split: train
    chat_template: tokenizer_default
    field_messages: messages
    roles_to_train: ["assistant"]

dataset_prepared_path: text2svg-prepared-pixelprose
val_set_size: 0.05
output_dir: ./lora-out

sequence_len: 4096
sample_packing: false
eval_sample_packing: false
pad_to_sequence_len: false

adapter: lora
lora_model_dir:
lora_r: 128
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_modules_to_save: # required when adding new tokens to LLaMA/Mistral
  - embed_tokens
  - lm_head

wandb_project: svg-sft-gemma-12b-saved
wandb_entity:
wandb_watch:
wandb_run_id: sexyrun1

gradient_accumulation_steps: 32
micro_batch_size: 1
num_epochs: 4
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0001

bf16: auto
fp16: false
tf32: false
train_on_inputs: false
group_by_length: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: false

warmup_steps: 10
save_steps: 20
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.0
fsdp:
fsdp_config:

hub_strategy: every_save
hub_model_id: thesantatitan/gemma-svg-sft

gemma-svg-sft

This model is a fine-tuned version of google/gemma-3-12b-it on the thesantatitan/pixelprose-sample-5k dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7442

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 128
  • total_eval_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 4.0

Training results

Training Loss Epoch Step Validation Loss
0.7293 0.9832 33 0.7807
0.6371 1.9832 66 0.7512
0.6369 2.9832 99 0.7448
0.6108 3.9832 132 0.7442

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
44
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for thesantatitan/gemma-svg-sft

Adapter
(37)
this model

Dataset used to train thesantatitan/gemma-svg-sft