skyoneliu
fix the format issue
7fba330
|
raw
history blame
4.09 kB
metadata
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-full
tags:
  - alignment_handbook-handbook
  - generated_from_trainer
datasets:
  - HuggingFaceH4/ultrafeedback_binarized
model-index:
  - name: mistral-7B-DPO
    results:
      - task:
          type: text-generation
        dataset:
          name: IFEval
          type: IFEval
        metrics:
          - name: inst_level_strict_acc
            type: IFEval
            value: 53.06
        source:
          name: Open LLM Leaderboard
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
      - task:
          type: text-generation
        dataset:
          name: BBH
          type: BBH
        metrics:
          - name: acc_norm
            type: Big Bench Hard (BBH)
            value: 21.78
        source:
          name: Open LLM Leaderboard
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
      - task:
          type: text-generation
        dataset:
          name: MATH
          type: MATH
        metrics:
          - name: exact_match
            type: Math Challenges
            value: 2.87
        source:
          name: Open LLM Leaderboard
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
      - task:
          type: text-generation
        dataset:
          name: GPQA
          type: GPQA
        metrics:
          - name: acc_norm
            type: Generalized Purpose Question Answering (GPQA)
            value: 3.47
        source:
          name: Open LLM Leaderboard
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
      - task:
          type: text-generation
        dataset:
          name: MuSR
          type: MuSR
        metrics:
          - name: acc_norm
            type: MuSR
            value: 7.54
        source:
          name: Open LLM Leaderboard
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
      - task:
          type: text-generation
        dataset:
          name: MMLU-PRO
          type: MMLU-PRO
        metrics:
          - name: acc
            type: MMLU-PRO
            value: 19.59
        source:
          name: Open LLM Leaderboard
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard

MistralForCausalLM_Cal_DPO

This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-full on the HuggingFaceH4/ultrafeedback_binarized dataset.

Model description

The Cal-DPO algorithm effectively addresses the alignment problem between large language models and human preferences by calibrating the implicit rewards in comparative preference learning to match the real rewards. It has demonstrated excellent performance in multiple task benchmark tests.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

We evaluate models on 6 key benchmarks using the Eleuther AI Language Model Evaluation Harness , a unified framework to test generative language models on a large number of different evaluation tasks.

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.14.6
  • Tokenizers 0.19.1