Finetune script ?
#8
by
Daemontatox
- opened
Amazing work , is it possible to share the finetuning script for this model series ?
hello @Daemontatox ,
this is a simple example using QLORA adapters to finetune our 0.5B instruct :
import torch
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from trl import SFTConfig, SFTTrainer
from peft import LoraConfig, get_peft_model, TaskType
model_name = "tiiuae/Falcon-H1-0.5B-Base"
use_quantization = False
bnb_config = None
if use_quantization:
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16,
+ llm_int8_skip_modules=["out_proj"]
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map='auto',
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.chat_template = "{{bos_token}}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant' }}{% endif %}"
peft_config = LoraConfig(
r=16,
lora_alpha=32,
lora_dropout=0.1,
bias="none",
task_type=TaskType.CAUSAL_LM,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj",]
)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
dataset = load_dataset('Vikhrmodels/It_hard_4.1', split='train')
def format_data(example):
conversation = [{'role': item['role'], 'content': item['content']}
for item in example['conversation']]
example['text'] = tokenizer.apply_chat_template(conversation, tokenize=False)
return example
dataset = dataset.map(format_data)
dataset = dataset.select(range(100))
train_test = dataset.train_test_split(test_size=0.1)
training_args = SFTConfig(
num_train_epochs=1,
learning_rate=5e-5,
per_device_train_batch_size=1,
gradient_accumulation_steps=4,
output_dir="./lora_output",
logging_steps=10,
save_steps=100,
bf16=True,
max_length=1024,
remove_unused_columns=True,
)
trainer = SFTTrainer(
model=model,
args=training_args,
train_dataset=train_test['train'],
eval_dataset=train_test['test'],
processing_class=tokenizer,
peft_config=peft_config
)
trainer.train()
model.save_pretrained("./lora_model")
when using LORA , we should pay attention to not include conv1d and mamba out_proj layer in the tarrget modules , this is a PR we raised in PEFT to validate this condition.
for more information ,
transformers should be installed from source: pip install git+https://github.com/huggingface/transformers.git
mamba-ssm / causal-conv1d install from pypi latest: pip install mamba-ssm causal-conv1d --no-build-isolation
Daemontatox
changed discussion status to
closed