Built with Axolotl

See axolotl config

axolotl version: 0.9.2

base_model: Qwen/Qwen3-0.6B-Base
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name

plugins:
  - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
strict: false

chat_template: qwen3
datasets:
  - path: timarni/mmlu-stem-alpaca
    type: alpaca
    split: train

val_set_size: 0.15
output_dir: ./outputs/qwen3_mmlu_alpaca_lr_5e-5
dataset_prepared_path: last_run_prepared

sequence_len: 4096 #2048
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true

wandb_project: mnlp_project
wandb_entity: tim-arni
wandb_watch:
wandb_name: qwen3-0.6B-mmlu_alpaca_style_lr_5e-5
wandb_log_model:

gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 5
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00005 # 0.0002

bf16: auto
tf32: true

gradient_checkpointing: offload
gradient_checkpointing_kwargs:
  use_reentrant: false
resume_from_checkpoint:
logging_steps: 1
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:

outputs/qwen3_mmlu_alpaca_lr_5e-5

This model is a fine-tuned version of Qwen/Qwen3-0.6B-Base on the timarni/mmlu-stem-alpaca dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2293

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • total_eval_batch_size: 2
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 5.0

Training results

Training Loss Epoch Step Validation Loss
0.5211 0.0952 1 0.5254
0.3878 0.2857 3 0.2026
0.0918 0.5714 6 0.1485
0.108 0.8571 9 0.1240
0.116 1.0952 12 0.1226
0.0992 1.3810 15 0.1217
0.0803 1.6667 18 0.2010
0.0557 1.9524 21 0.1384
0.0627 2.1905 24 0.1467
0.0315 2.4762 27 0.1556
0.0454 2.7619 30 0.2070
0.0118 3.0 33 0.2289
0.0461 3.2857 36 0.2317
0.0082 3.5714 39 0.2292
0.029 3.8571 42 0.2290
0.0138 4.0952 45 0.2299
0.0178 4.3810 48 0.2293

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
34
Safetensors
Model size
596M params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for timarni/MNLP_M2_mcqa_model

Finetuned
(283)
this model