Built with Axolotl

See axolotl config

axolotl version: 0.9.2

base_model: Qwen/Qwen3-0.6B-Base
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name

plugins:
  - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
strict: false

chat_template: qwen3
datasets:
  - path: timarni/MNLP_M3_mcqa_dataset # timarni/MNLP_intstruction_tuning
    name: stem_instruction_tuning_balanced_mini
    type: alpaca
    split: train

shuffle_merged_datasets: true

val_set_size: 0.1
output_dir: ./outputs/base_it_bal
dataset_prepared_path: last_run_prepared

sequence_len: 2048 #2048
sample_packing: true # was true -> need to check if it actually learns on the samples or not (better understand te hyperparam and event. install axolotl to debug)
eval_sample_packing: true
pad_to_sequence_len: true
train_on_inputs: false # NEW
# group_by_length: false NEW?

# To be sure that no LORA is done
adapter: null
lora: false
merge_lora: false

wandb_project: mnlp_project
wandb_entity: tim-arni
wandb_watch:
wandb_name: base_it_bal
wandb_log_model:

gradient_accumulation_steps: 2
micro_batch_size: 1 # 2
num_epochs: 6
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 5e-6 # 0.00005
cosine_min_lr_ratio: 0.1

warmup_ratio: 0.05
weight_decay: 0.01

bf16: auto
tf32: true

gradient_checkpointing: offload
gradient_checkpointing_kwargs:
  use_reentrant: false
resume_from_checkpoint:
logging_steps: 1
gradient_clipping: 1.0 # or max_grad_norm?
flash_attention: true

evals_per_epoch: 4
saves_per_epoch: 2
save_total_limit: 25
special_tokens:

outputs/base_it_bal

This model is a fine-tuned version of Qwen/Qwen3-0.6B-Base on the timarni/MNLP_M3_mcqa_dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 4.7220

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • total_eval_batch_size: 2
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 217
  • num_epochs: 6.0

Training results

Training Loss Epoch Step Validation Loss
0.8047 0.0014 1 6.2910
0.1479 0.2509 182 5.3610
0.1379 0.5017 364 4.9984
0.1154 0.7526 546 4.9730
0.1503 1.0028 728 4.8248
0.1373 1.2536 910 4.7810
0.1169 1.5045 1092 4.7103
0.1194 1.7553 1274 4.7154
0.1506 2.0055 1456 4.7224
0.1454 2.2564 1638 4.7103
0.1481 2.5072 1820 4.6918
0.141 2.7581 2002 4.6967
0.1495 3.0083 2184 4.6989
0.0994 3.2591 2366 4.7124
0.1369 3.5100 2548 4.7364
0.1266 3.7609 2730 4.7268
0.151 4.0110 2912 4.7217
0.088 4.2619 3094 4.6797
0.1203 4.5127 3276 4.7181
0.1598 4.7636 3458 4.7157
0.1399 5.0138 3640 4.6857
0.1258 5.2646 3822 4.7303
0.1296 5.5155 4004 4.7357
0.1174 5.7664 4186 4.7220

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
8
Safetensors
Model size
596M params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for timarni/base_it_bal

Finetuned
(283)
this model

Dataset used to train timarni/base_it_bal