See axolotl config
axolotl version: 0.9.2
base_model: Qwen/Qwen3-0.6B-Base
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
plugins:
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
strict: false
chat_template: qwen3
datasets:
- path: timarni/MNLP_M3_mcqa_dataset # timarni/MNLP_intstruction_tuning
name: stem_instruction_tuning_balanced_mini
type: alpaca
split: train
shuffle_merged_datasets: true
val_set_size: 0.1
output_dir: ./outputs/base_it_bal
dataset_prepared_path: last_run_prepared
sequence_len: 2048 #2048
sample_packing: true # was true -> need to check if it actually learns on the samples or not (better understand te hyperparam and event. install axolotl to debug)
eval_sample_packing: true
pad_to_sequence_len: true
train_on_inputs: false # NEW
# group_by_length: false NEW?
# To be sure that no LORA is done
adapter: null
lora: false
merge_lora: false
wandb_project: mnlp_project
wandb_entity: tim-arni
wandb_watch:
wandb_name: base_it_bal
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 1 # 2
num_epochs: 6
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 5e-6 # 0.00005
cosine_min_lr_ratio: 0.1
warmup_ratio: 0.05
weight_decay: 0.01
bf16: auto
tf32: true
gradient_checkpointing: offload
gradient_checkpointing_kwargs:
use_reentrant: false
resume_from_checkpoint:
logging_steps: 1
gradient_clipping: 1.0 # or max_grad_norm?
flash_attention: true
evals_per_epoch: 4
saves_per_epoch: 2
save_total_limit: 25
special_tokens:
outputs/base_it_bal
This model is a fine-tuned version of Qwen/Qwen3-0.6B-Base on the timarni/MNLP_M3_mcqa_dataset dataset. It achieves the following results on the evaluation set:
- Loss: 4.7220
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- total_eval_batch_size: 2
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 217
- num_epochs: 6.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.8047 | 0.0014 | 1 | 6.2910 |
0.1479 | 0.2509 | 182 | 5.3610 |
0.1379 | 0.5017 | 364 | 4.9984 |
0.1154 | 0.7526 | 546 | 4.9730 |
0.1503 | 1.0028 | 728 | 4.8248 |
0.1373 | 1.2536 | 910 | 4.7810 |
0.1169 | 1.5045 | 1092 | 4.7103 |
0.1194 | 1.7553 | 1274 | 4.7154 |
0.1506 | 2.0055 | 1456 | 4.7224 |
0.1454 | 2.2564 | 1638 | 4.7103 |
0.1481 | 2.5072 | 1820 | 4.6918 |
0.141 | 2.7581 | 2002 | 4.6967 |
0.1495 | 3.0083 | 2184 | 4.6989 |
0.0994 | 3.2591 | 2366 | 4.7124 |
0.1369 | 3.5100 | 2548 | 4.7364 |
0.1266 | 3.7609 | 2730 | 4.7268 |
0.151 | 4.0110 | 2912 | 4.7217 |
0.088 | 4.2619 | 3094 | 4.6797 |
0.1203 | 4.5127 | 3276 | 4.7181 |
0.1598 | 4.7636 | 3458 | 4.7157 |
0.1399 | 5.0138 | 3640 | 4.6857 |
0.1258 | 5.2646 | 3822 | 4.7303 |
0.1296 | 5.5155 | 4004 | 4.7357 |
0.1174 | 5.7664 | 4186 | 4.7220 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.5.1+cu121
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for timarni/base_it_bal
Base model
Qwen/Qwen3-0.6B-Base