See axolotl config
axolotl version: 0.9.2
base_model: Qwen/Qwen3-0.6B-Base
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
plugins:
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
strict: false
chat_template: qwen3
datasets:
- path: timarni/MNLP_M3_mcqa_dataset
name: stem_instruction_tuning_hard
type: alpaca
split: train
val_set_size: 0.1
output_dir: ./outputs/base_it_hard
dataset_prepared_path: last_run_prepared
sequence_len: 2048 # 4096
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
# To be sure that no LORA is done
adapter: null
lora: false
merge_lora: false
wandb_project: mnlp_project
wandb_entity: tim-arni
wandb_watch:
wandb_name: base_it_hard
wandb_log_model:
gradient_accumulation_steps: 4 # 2
micro_batch_size: 2 # 1
num_epochs: 5
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00001 # 0.00005
cosine_min_lr_ratio: 0.1
bf16: auto
tf32: true
gradient_checkpointing: offload
gradient_checkpointing_kwargs:
use_reentrant: false
resume_from_checkpoint:
logging_steps: 1
flash_attention: true
warmup_ratio: 0.05
evals_per_epoch: 4
saves_per_epoch: 2
save_total_limit: 10
weight_decay: 0.01
special_tokens:
outputs/base_it_hard
This model is a fine-tuned version of Qwen/Qwen3-0.6B-Base on the timarni/MNLP_M3_mcqa_dataset dataset. It achieves the following results on the evaluation set:
- Loss: 4.5354
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 45
- num_epochs: 5.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.8271 | 0.0055 | 1 | 6.2702 |
0.1398 | 0.2490 | 45 | 4.7948 |
0.1439 | 0.4979 | 90 | 4.3628 |
0.1377 | 0.7469 | 135 | 4.2137 |
0.1436 | 0.9959 | 180 | 4.2396 |
0.1086 | 1.2434 | 225 | 4.2662 |
0.1018 | 1.4924 | 270 | 4.3334 |
0.1226 | 1.7414 | 315 | 4.3240 |
0.13 | 1.9903 | 360 | 4.3957 |
0.1269 | 2.2379 | 405 | 4.3869 |
0.11 | 2.4869 | 450 | 4.4244 |
0.1081 | 2.7358 | 495 | 4.4782 |
0.1139 | 2.9848 | 540 | 4.5098 |
0.1041 | 3.2324 | 585 | 4.4869 |
0.1052 | 3.4813 | 630 | 4.5032 |
0.1143 | 3.7303 | 675 | 4.5032 |
0.1144 | 3.9793 | 720 | 4.5265 |
0.104 | 4.2268 | 765 | 4.5161 |
0.1343 | 4.4758 | 810 | 4.5280 |
0.1217 | 4.7248 | 855 | 4.5158 |
0.1158 | 4.9737 | 900 | 4.5354 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.5.1+cu121
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 11
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for timarni/base_it_hard_180
Base model
Qwen/Qwen3-0.6B-Base