Built with Axolotl

See axolotl config

axolotl version: 0.9.2

base_model: Qwen/Qwen3-0.6B-Base
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name

plugins:
  - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
strict: false

chat_template: qwen3
datasets:
  - path: timarni/MNLP_M3_mcqa_dataset
    name: stem_instruction_tuning_hard
    type: alpaca
    split: train

val_set_size: 0.1
output_dir: ./outputs/base_it_hard
dataset_prepared_path: last_run_prepared

sequence_len: 2048 # 4096
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true

# To be sure that no LORA is done
adapter: null
lora: false
merge_lora: false

wandb_project: mnlp_project
wandb_entity: tim-arni
wandb_watch:
wandb_name: base_it_hard
wandb_log_model:

gradient_accumulation_steps: 4 # 2
micro_batch_size: 2 # 1
num_epochs: 5
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00001 # 0.00005
cosine_min_lr_ratio: 0.1

bf16: auto
tf32: true

gradient_checkpointing: offload
gradient_checkpointing_kwargs:
  use_reentrant: false
resume_from_checkpoint:
logging_steps: 1
flash_attention: true

warmup_ratio: 0.05
evals_per_epoch: 4
saves_per_epoch: 2
save_total_limit: 10
weight_decay: 0.01
special_tokens:

outputs/base_it_hard

This model is a fine-tuned version of Qwen/Qwen3-0.6B-Base on the timarni/MNLP_M3_mcqa_dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 4.5354

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • total_eval_batch_size: 4
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 45
  • num_epochs: 5.0

Training results

Training Loss Epoch Step Validation Loss
0.8271 0.0055 1 6.2702
0.1398 0.2490 45 4.7948
0.1439 0.4979 90 4.3628
0.1377 0.7469 135 4.2137
0.1436 0.9959 180 4.2396
0.1086 1.2434 225 4.2662
0.1018 1.4924 270 4.3334
0.1226 1.7414 315 4.3240
0.13 1.9903 360 4.3957
0.1269 2.2379 405 4.3869
0.11 2.4869 450 4.4244
0.1081 2.7358 495 4.4782
0.1139 2.9848 540 4.5098
0.1041 3.2324 585 4.4869
0.1052 3.4813 630 4.5032
0.1143 3.7303 675 4.5032
0.1144 3.9793 720 4.5265
0.104 4.2268 765 4.5161
0.1343 4.4758 810 4.5280
0.1217 4.7248 855 4.5158
0.1158 4.9737 900 4.5354

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
11
Safetensors
Model size
596M params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for timarni/base_it_hard_180

Finetuned
(284)
this model

Dataset used to train timarni/base_it_hard_180