See axolotl config
axolotl version: 0.9.2
base_model: timarni/qwen3_dpo_100k # timarni/qwen3_dpo_100k
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
plugins:
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
strict: false
chat_template: qwen3
datasets:
- path: timarni/MNLP_STEM_IT_HARD # timarni/MNLP_intstruction_tuning
type: alpaca
split: train
shuffle_merged_datasets: true
val_set_size: 0.1
output_dir: ./outputs/dpo_100k_it_hard
dataset_prepared_path: last_run_prepared
sequence_len: 4096 #2048
sample_packing: true # was true -> need to check if it actually learns on the samples or not (better understand te hyperparam and event. install axolotl to debug)
eval_sample_packing: true
pad_to_sequence_len: true
# train_on_inputs: true # NEW
# group_by_length: false NEW?
# To be sure that no LORA is done
adapter: null
lora: false
merge_lora: false
wandb_project: mnlp_project
wandb_entity: tim-arni
wandb_watch:
wandb_name: dpo_100k_it_hard
wandb_log_model:
gradient_accumulation_steps: 4 # 16
micro_batch_size: 2 # 2
num_epochs: 5 # 3
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00001 # 0.00005
# cosine_min_lr_ratio: 0.1
warmup_ratio: 0.05
weight_decay: 0.01
bf16: auto
tf32: true
gradient_checkpointing: offload
gradient_checkpointing_kwargs:
use_reentrant: false
resume_from_checkpoint:
logging_steps: 1
gradient_clipping: 1.0 # or max_grad_norm?
flash_attention: true
evals_per_epoch: 4
saves_per_epoch: 2
save_total_limit: 25
special_tokens:
outputs/dpo_100k_it_hard
This model is a fine-tuned version of timarni/qwen3_dpo_100k on the timarni/MNLP_STEM_IT_HARD dataset. It achieves the following results on the evaluation set:
- Loss: 0.1091
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 11
- num_epochs: 5.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.7402 | 0.0209 | 1 | 0.6042 |
0.1253 | 0.2513 | 12 | 0.1207 |
0.0888 | 0.5026 | 24 | 0.1103 |
0.0858 | 0.7539 | 36 | 0.1097 |
0.0927 | 1.0 | 48 | 0.1088 |
0.0944 | 1.2513 | 60 | 0.1087 |
0.0895 | 1.5026 | 72 | 0.1080 |
0.0881 | 1.7539 | 84 | 0.1088 |
0.1011 | 2.0 | 96 | 0.1085 |
0.0764 | 2.2513 | 108 | 0.1089 |
0.0738 | 2.5026 | 120 | 0.1093 |
0.0659 | 2.7539 | 132 | 0.1090 |
0.0764 | 3.0 | 144 | 0.1089 |
0.0691 | 3.2513 | 156 | 0.1091 |
0.0581 | 3.5026 | 168 | 0.1091 |
0.0613 | 3.7539 | 180 | 0.1092 |
0.059 | 4.0 | 192 | 0.1093 |
0.0723 | 4.2513 | 204 | 0.1092 |
0.0579 | 4.5026 | 216 | 0.1092 |
0.0634 | 4.7539 | 228 | 0.1091 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.5.1+cu121
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 19