See axolotl config
axolotl version: 0.9.2
base_model: timarni/qwen3_dpo
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
plugins:
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
strict: false
chat_template: qwen3
datasets:
- path: timarni/MNLP_intstruction_tuning # timarni/MNLP_intstruction_tuning
type: alpaca
split: train
shuffle_merged_datasets: true
val_set_size: 0.1
output_dir: ./dpo_50k_full_alpaca_on_inputs
dataset_prepared_path: last_run_prepared
sequence_len: 2048 #2048
sample_packing: true # was true -> need to check if it actually learns on the samples or not (better understand te hyperparam and event. install axolotl to debug)
eval_sample_packing: true
pad_to_sequence_len: true
train_on_inputs: true # NEW
# group_by_length: false NEW?
# To be sure that no LORA is done
adapter: null
lora: false
merge_lora: false
wandb_project: mnlp_project
wandb_entity: tim-arni
wandb_watch:
wandb_name: dpo_50k_full_alpaca_on_inputs
wandb_log_model:
gradient_accumulation_steps: 16
micro_batch_size: 2 # 2
num_epochs: 3
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00005 # 0.00005
cosine_min_lr_ratio: 0.1
warmup_ratio: 0.05
weight_decay: 0.01
bf16: auto
tf32: true
gradient_checkpointing: offload
gradient_checkpointing_kwargs:
use_reentrant: false
resume_from_checkpoint:
logging_steps: 1
gradient_clipping: 1.0 # or max_grad_norm?
flash_attention: true
evals_per_epoch: 4
saves_per_epoch: 2
save_total_limit: 25
special_tokens:
dpo_50k_full_alpaca_on_inputs
This model is a fine-tuned version of timarni/qwen3_dpo on the timarni/MNLP_intstruction_tuning dataset. It achieves the following results on the evaluation set:
- Loss: 0.6042
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- total_eval_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 28
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.2898 | 0.0053 | 1 | 1.3104 |
1.9418 | 0.2508 | 47 | 0.6884 |
1.9117 | 0.5015 | 94 | 0.6640 |
1.8866 | 0.7523 | 141 | 0.6476 |
1.8145 | 1.0 | 188 | 0.6326 |
1.7877 | 1.2508 | 235 | 0.6215 |
1.7858 | 1.5015 | 282 | 0.6154 |
1.7838 | 1.7523 | 329 | 0.6099 |
1.6951 | 2.0 | 376 | 0.6055 |
1.7257 | 2.2508 | 423 | 0.6056 |
1.7434 | 2.5015 | 470 | 0.6046 |
1.7578 | 2.7523 | 517 | 0.6042 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.5.1+cu121
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support