See axolotl config
axolotl version: 0.9.2
base_model: timarni/qwen3_dpo
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
plugins:
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
strict: false
chat_template: qwen3
datasets:
- path: timarni/MNLP_M3_mcqa_dataset # timarni/MNLP_intstruction_tuning
name: stem_instruction_tuning_balanced_mini
type: alpaca
split: train
shuffle_merged_datasets: true
val_set_size: 0.1
output_dir: ./outputs/dpo_it_bal
dataset_prepared_path: last_run_prepared
sequence_len: 2048 #2048
sample_packing: true # was true -> need to check if it actually learns on the samples or not (better understand te hyperparam and event. install axolotl to debug)
eval_sample_packing: true
pad_to_sequence_len: true
train_on_inputs: false # NEW
# group_by_length: false NEW?
# To be sure that no LORA is done
adapter: null
lora: false
merge_lora: false
wandb_project: mnlp_project
wandb_entity: tim-arni
wandb_watch:
wandb_name: wiki_it_bal
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 1 # 2
num_epochs: 6
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 5e-6 # 0.00005
cosine_min_lr_ratio: 0.1
warmup_ratio: 0.05
weight_decay: 0.01
bf16: auto
tf32: true
gradient_checkpointing: offload
gradient_checkpointing_kwargs:
use_reentrant: false
resume_from_checkpoint:
logging_steps: 1
gradient_clipping: 1.0 # or max_grad_norm?
flash_attention: true
evals_per_epoch: 4
saves_per_epoch: 2
save_total_limit: 25
special_tokens:
outputs/dpo_it_bal
This model is a fine-tuned version of timarni/qwen3_dpo on the timarni/MNLP_M3_mcqa_dataset dataset. It achieves the following results on the evaluation set:
- Loss: 0.1734
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- total_eval_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 24
- num_epochs: 6.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.0143 | 0.0122 | 1 | 1.8038 |
0.988 | 0.2561 | 21 | 0.9164 |
0.2107 | 0.5122 | 42 | 0.1900 |
0.1751 | 0.7683 | 63 | 0.1814 |
0.1691 | 1.0244 | 84 | 0.1785 |
0.1521 | 1.2805 | 105 | 0.1759 |
0.1458 | 1.5366 | 126 | 0.1759 |
0.1822 | 1.7927 | 147 | 0.1749 |
0.153 | 2.0488 | 168 | 0.1736 |
0.1603 | 2.3049 | 189 | 0.1739 |
0.1474 | 2.5610 | 210 | 0.1751 |
0.2087 | 2.8171 | 231 | 0.1738 |
0.1599 | 3.0732 | 252 | 0.1732 |
0.1411 | 3.3293 | 273 | 0.1734 |
0.2014 | 3.5854 | 294 | 0.1744 |
0.1507 | 3.8415 | 315 | 0.1735 |
0.1684 | 4.0976 | 336 | 0.1735 |
0.1547 | 4.3537 | 357 | 0.1731 |
0.1469 | 4.6098 | 378 | 0.1738 |
0.155 | 4.8659 | 399 | 0.1736 |
0.162 | 5.1220 | 420 | 0.1735 |
0.1274 | 5.3780 | 441 | 0.1732 |
0.1397 | 5.6341 | 462 | 0.1736 |
0.1333 | 5.8902 | 483 | 0.1734 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.5.1+cu121
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support