See axolotl config
axolotl version: 0.9.2
base_model: timarni/qwen3_dpo
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
plugins:
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
strict: false
chat_template: qwen3
datasets:
- path: timarni/MNLP_STEM_IT_HARD
type: alpaca
split: train
shuffle_merged_datasets: true
val_set_size: 0.1
output_dir: ./outputs/dpo_it_hard
dataset_prepared_path: last_run_prepared
sequence_len: 4096 #2048
sample_packing: true # was true -> need to check if it actually learns on the samples or not (better understand te hyperparam and event. install axolotl to debug)
eval_sample_packing: false
pad_to_sequence_len: true
# train_on_inputs: true # NEW
# group_by_length: false NEW?
# To be sure that no LORA is done
adapter: null
lora: false
merge_lora: false
wandb_project: mnlp_project
wandb_entity: tim-arni
wandb_watch:
wandb_name: dpo_it_hard
wandb_log_model:
gradient_accumulation_steps: 16 # 2
micro_batch_size: 2 # 1
num_epochs: 15
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00001 # 0.00005
# cosine_min_lr_ratio: 0.1
warmup_ratio: 0.05
weight_decay: 0.01
bf16: auto
tf32: true
gradient_checkpointing: offload
gradient_checkpointing_kwargs:
use_reentrant: false
resume_from_checkpoint:
logging_steps: 1
gradient_clipping: 1.0 # or max_grad_norm?
flash_attention: true
evals_per_epoch: 2
saves_per_epoch: 1
save_total_limit: 20
special_tokens:
outputs/dpo_it_hard
This model is a fine-tuned version of timarni/qwen3_dpo on the timarni/MNLP_STEM_IT_HARD dataset. It achieves the following results on the evaluation set:
- Loss: 0.1297
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- total_eval_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 2
- num_epochs: 15.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.7556 | 0.3404 | 1 | 0.7317 |
0.7451 | 0.6809 | 2 | 0.5623 |
0.5054 | 1.0 | 3 | 0.2737 |
0.1901 | 1.3404 | 4 | 0.1879 |
0.1304 | 1.6809 | 5 | 0.1532 |
0.1146 | 2.0 | 6 | 0.1421 |
0.1046 | 2.3404 | 7 | 0.1377 |
0.1001 | 2.6809 | 8 | 0.1353 |
0.1009 | 3.0 | 9 | 0.1338 |
0.0957 | 3.3404 | 10 | 0.1330 |
0.0931 | 3.6809 | 11 | 0.1323 |
0.0945 | 4.0 | 12 | 0.1316 |
0.0914 | 4.3404 | 13 | 0.1312 |
0.0894 | 4.6809 | 14 | 0.1307 |
0.0912 | 5.0 | 15 | 0.1303 |
0.0883 | 5.3404 | 16 | 0.1302 |
0.0868 | 5.6809 | 17 | 0.1301 |
0.0889 | 6.0 | 18 | 0.1299 |
0.0864 | 6.3404 | 19 | 0.1299 |
0.0856 | 6.6809 | 20 | 0.1298 |
0.0878 | 7.0 | 21 | 0.1299 |
0.0858 | 7.3404 | 22 | 0.1299 |
0.085 | 7.6809 | 23 | 0.1298 |
0.0874 | 8.0 | 24 | 0.1298 |
0.0855 | 8.3404 | 25 | 0.1299 |
0.0849 | 8.6809 | 26 | 0.1297 |
0.0873 | 9.0 | 27 | 0.1298 |
0.0854 | 9.3404 | 28 | 0.1297 |
0.0849 | 9.6809 | 29 | 0.1297 |
0.0873 | 10.0 | 30 | 0.1297 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.5.1+cu121
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support