Built with Axolotl

See axolotl config

axolotl version: 0.9.2

base_model: timarni/qwen3_dpo
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name

plugins:
  - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
strict: false

chat_template: qwen3
datasets:
  - path: timarni/MNLP_STEM_IT_HARD
    type: alpaca
    split: train

shuffle_merged_datasets: true

val_set_size: 0.1
output_dir: ./outputs/dpo_it_hard
dataset_prepared_path: last_run_prepared

sequence_len: 4096 #2048
sample_packing: true # was true -> need to check if it actually learns on the samples or not (better understand te hyperparam and event. install axolotl to debug)
eval_sample_packing: false
pad_to_sequence_len: true
# train_on_inputs: true # NEW
# group_by_length: false NEW?

# To be sure that no LORA is done
adapter: null
lora: false
merge_lora: false

wandb_project: mnlp_project
wandb_entity: tim-arni
wandb_watch:
wandb_name: dpo_it_hard
wandb_log_model:

gradient_accumulation_steps: 16 # 2
micro_batch_size: 2 # 1
num_epochs: 15
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00001 # 0.00005
# cosine_min_lr_ratio: 0.1

warmup_ratio: 0.05
weight_decay: 0.01

bf16: auto
tf32: true

gradient_checkpointing: offload
gradient_checkpointing_kwargs:
  use_reentrant: false
resume_from_checkpoint:
logging_steps: 1
gradient_clipping: 1.0 # or max_grad_norm?
flash_attention: true

evals_per_epoch: 2
saves_per_epoch: 1
save_total_limit: 20
special_tokens:

outputs/dpo_it_hard

This model is a fine-tuned version of timarni/qwen3_dpo on the timarni/MNLP_STEM_IT_HARD dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1297

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 128
  • total_eval_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 2
  • num_epochs: 15.0

Training results

Training Loss Epoch Step Validation Loss
0.7556 0.3404 1 0.7317
0.7451 0.6809 2 0.5623
0.5054 1.0 3 0.2737
0.1901 1.3404 4 0.1879
0.1304 1.6809 5 0.1532
0.1146 2.0 6 0.1421
0.1046 2.3404 7 0.1377
0.1001 2.6809 8 0.1353
0.1009 3.0 9 0.1338
0.0957 3.3404 10 0.1330
0.0931 3.6809 11 0.1323
0.0945 4.0 12 0.1316
0.0914 4.3404 13 0.1312
0.0894 4.6809 14 0.1307
0.0912 5.0 15 0.1303
0.0883 5.3404 16 0.1302
0.0868 5.6809 17 0.1301
0.0889 6.0 18 0.1299
0.0864 6.3404 19 0.1299
0.0856 6.6809 20 0.1298
0.0878 7.0 21 0.1299
0.0858 7.3404 22 0.1299
0.085 7.6809 23 0.1298
0.0874 8.0 24 0.1298
0.0855 8.3404 25 0.1299
0.0849 8.6809 26 0.1297
0.0873 9.0 27 0.1298
0.0854 9.3404 28 0.1297
0.0849 9.6809 29 0.1297
0.0873 10.0 30 0.1297

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
8
Safetensors
Model size
596M params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for timarni/dpo_it_hard_180

Finetuned
timarni/qwen3_dpo
Finetuned
(8)
this model

Dataset used to train timarni/dpo_it_hard_180