Built with Axolotl

See axolotl config

axolotl version: 0.9.2

base_model: Qwen/Qwen3-0.6B-Base
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name

plugins:
  - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
strict: false

chat_template: qwen3
datasets:
  - path: timarni/MNLP_dataset_mmlu_train
    type: alpaca
    split: train

val_set_size: 0.15
output_dir: ./outputs/qwen3_mmlu_alpaca_lr_5e-5
dataset_prepared_path: last_run_prepared

sequence_len: 4096 #2048
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true

wandb_project: mnlp_project
wandb_entity: tim-arni
wandb_watch:
wandb_name: qwen3-0.6B-mmlu_alpaca_style_lr_5e-5
wandb_log_model:

gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 2
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00005 # 0.0002

bf16: auto
tf32: true

gradient_checkpointing: offload
gradient_checkpointing_kwargs:
  use_reentrant: false
resume_from_checkpoint:
logging_steps: 1
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:

outputs/qwen3_mmlu_alpaca_lr_5e-5

This model is a fine-tuned version of Qwen/Qwen3-0.6B-Base on the timarni/MNLP_dataset_mmlu_train dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0741

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • total_eval_batch_size: 4
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 2.0

Training results

Training Loss Epoch Step Validation Loss
0.2846 0.0009 1 0.4087
0.0757 0.2502 275 0.0757
0.0592 0.5005 550 0.0678
0.0657 0.7507 825 0.0639
0.0435 1.0009 1100 0.0605
0.01 1.2511 1375 0.0704
0.0035 1.5014 1650 0.0756
0.0081 1.7516 1925 0.0741

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
35
Safetensors
Model size
596M params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for timarni/qwen3-0.6B-mmlu-alpaca

Finetuned
(283)
this model
Finetunes
2 models

Dataset used to train timarni/qwen3-0.6B-mmlu-alpaca