See axolotl config
axolotl version: 0.9.2
base_model: Qwen/Qwen3-0.6B-Base
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
plugins:
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
strict: false
chat_template: qwen3
datasets:
- path: timarni/MNLP_dataset_mmlu_train
type: alpaca
split: train
val_set_size: 0.15
output_dir: ./outputs/qwen3_mmlu_alpaca_lr_5e-5
dataset_prepared_path: last_run_prepared
sequence_len: 4096 #2048
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
wandb_project: mnlp_project
wandb_entity: tim-arni
wandb_watch:
wandb_name: qwen3-0.6B-mmlu_alpaca_style_lr_5e-5
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 2
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00005 # 0.0002
bf16: auto
tf32: true
gradient_checkpointing: offload
gradient_checkpointing_kwargs:
use_reentrant: false
resume_from_checkpoint:
logging_steps: 1
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:
outputs/qwen3_mmlu_alpaca_lr_5e-5
This model is a fine-tuned version of Qwen/Qwen3-0.6B-Base on the timarni/MNLP_dataset_mmlu_train dataset. It achieves the following results on the evaluation set:
- Loss: 0.0741
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- total_eval_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.2846 | 0.0009 | 1 | 0.4087 |
0.0757 | 0.2502 | 275 | 0.0757 |
0.0592 | 0.5005 | 550 | 0.0678 |
0.0657 | 0.7507 | 825 | 0.0639 |
0.0435 | 1.0009 | 1100 | 0.0605 |
0.01 | 1.2511 | 1375 | 0.0704 |
0.0035 | 1.5014 | 1650 | 0.0756 |
0.0081 | 1.7516 | 1925 | 0.0741 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.5.1+cu121
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 35
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support