See axolotl config
axolotl version: 0.9.2
base_model: Qwen/Qwen3-0.6B-Base
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
plugins:
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
strict: false
chat_template: qwen3
datasets:
- path: mlabonne/FineTome-100k
type: chat_template
split: train[:20%]
field_messages: conversations
message_property_mappings:
role: from
content: value
val_set_size: 0.1
output_dir: ./outputs/out
dataset_prepared_path: last_run_prepared
sequence_len: 2048
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
# load_in_4bit: true
# adapter: qlora
# lora_r: 16
# lora_alpha: 32
# lora_target_modules:
# - q_proj
# - k_proj
# - v_proj
# - o_proj
# - down_proj
# - up_proj
# lora_mlp_kernel: true
# lora_qkv_kernel: true
# lora_o_kernel: true
wandb_project: mnlp_project
wandb_entity: tim-arni
wandb_watch:
wandb_name: qwen3-0.6B-test_run
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_torch_4bit
lr_scheduler: cosine
learning_rate: 0.0002
bf16: auto
tf32: true
gradient_checkpointing: offload
gradient_checkpointing_kwargs:
use_reentrant: false
resume_from_checkpoint:
logging_steps: 1
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:
outputs/out
This model is a fine-tuned version of Qwen/Qwen3-0.6B-Base on the mlabonne/FineTome-100k dataset. It achieves the following results on the evaluation set:
- Loss: 0.9220
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- total_eval_batch_size: 2
- optimizer: Use adamw_torch_4bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.835 | 0.0009 | 1 | 0.8869 |
1.1883 | 0.2502 | 282 | 1.1259 |
0.8299 | 0.5004 | 564 | 1.0111 |
0.8792 | 0.7507 | 846 | 0.9220 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.5.1+cu121
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 19
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for timarni/qwen3_FineTome-100k
Base model
Qwen/Qwen3-0.6B-Base