Built with Axolotl

See axolotl config

axolotl version: 0.9.2

base_model: Qwen/Qwen3-0.6B-Base
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name

plugins:
  - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
strict: false

chat_template: qwen3
datasets:
  - path: mlabonne/FineTome-100k
    type: chat_template
    split: train[:20%]
    field_messages: conversations
    message_property_mappings:
      role: from
      content: value
val_set_size: 0.1
output_dir: ./outputs/out
dataset_prepared_path: last_run_prepared

sequence_len: 2048
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true

# load_in_4bit: true
# adapter: qlora
# lora_r: 16
# lora_alpha: 32
# lora_target_modules:
#   - q_proj
#   - k_proj
#   - v_proj
#   - o_proj
#   - down_proj
#   - up_proj
# lora_mlp_kernel: true
# lora_qkv_kernel: true
# lora_o_kernel: true

wandb_project: mnlp_project
wandb_entity: tim-arni
wandb_watch:
wandb_name: qwen3-0.6B-test_run
wandb_log_model:

gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_torch_4bit
lr_scheduler: cosine
learning_rate: 0.0002

bf16: auto
tf32: true

gradient_checkpointing: offload
gradient_checkpointing_kwargs:
  use_reentrant: false
resume_from_checkpoint:
logging_steps: 1
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:

outputs/out

This model is a fine-tuned version of Qwen/Qwen3-0.6B-Base on the mlabonne/FineTome-100k dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9220

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • total_eval_batch_size: 2
  • optimizer: Use adamw_torch_4bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1.0

Training results

Training Loss Epoch Step Validation Loss
0.835 0.0009 1 0.8869
1.1883 0.2502 282 1.1259
0.8299 0.5004 564 1.0111
0.8792 0.7507 846 0.9220

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
19
Safetensors
Model size
596M params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for timarni/qwen3_FineTome-100k

Finetuned
(284)
this model

Dataset used to train timarni/qwen3_FineTome-100k