qwen3_s1k_it_hard / README.md
timarni's picture
Upload final fine-tuned Qwen3-0.6B model
a67d4fe verified
---
library_name: transformers
license: apache-2.0
base_model: timarni/qwen3_s1k
tags:
- generated_from_trainer
datasets:
- timarni/MNLP_STEM_IT_HARD
model-index:
- name: outputs/qwen3_s1k_it_hard
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.9.2`
```yaml
base_model: timarni/qwen3_s1k
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
plugins:
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
strict: false
chat_template: qwen3
datasets:
- path: timarni/MNLP_STEM_IT_HARD
type: alpaca
split: train
val_set_size: 0.15
output_dir: ./outputs/qwen3_s1k_it_hard
dataset_prepared_path: last_run_prepared
sequence_len: 2048 # 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
# To be sure that no LORA is done
adapter: null
lora: false
merge_lora: false
wandb_project: mnlp_project
wandb_entity: tim-arni
wandb_watch:
wandb_name: qwen3_s1k_it_hard
wandb_log_model:
gradient_accumulation_steps: 4 # 2
micro_batch_size: 2 # 1
num_epochs: 5
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00001 # 0.00005
cosine_min_lr_ratio: 0.1
bf16: auto
tf32: true
gradient_checkpointing: offload
gradient_checkpointing_kwargs:
use_reentrant: false
resume_from_checkpoint:
logging_steps: 1
flash_attention: true
warmup_ratio: 0.03
evals_per_epoch: 4
saves_per_epoch: 2
save_total_limit: 10
weight_decay: 0.001
special_tokens:
```
</details><br>
# outputs/qwen3_s1k_it_hard
This model is a fine-tuned version of [timarni/qwen3_s1k](https://huggingface.co/timarni/qwen3_s1k) on the timarni/MNLP_STEM_IT_HARD dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1654
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 13
- num_epochs: 5.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.0345 | 0.0109 | 1 | 2.0409 |
| 0.1118 | 0.2514 | 23 | 0.1711 |
| 0.0848 | 0.5027 | 46 | 0.1647 |
| 0.0884 | 0.7541 | 69 | 0.1625 |
| 0.1029 | 1.0 | 92 | 0.1623 |
| 0.0555 | 1.2514 | 115 | 0.1616 |
| 0.0767 | 1.5027 | 138 | 0.1618 |
| 0.0743 | 1.7541 | 161 | 0.1612 |
| 0.0747 | 2.0 | 184 | 0.1619 |
| 0.0571 | 2.2514 | 207 | 0.1647 |
| 0.0543 | 2.5027 | 230 | 0.1628 |
| 0.0573 | 2.7541 | 253 | 0.1643 |
| 0.0601 | 3.0 | 276 | 0.1630 |
| 0.057 | 3.2514 | 299 | 0.1641 |
| 0.0438 | 3.5027 | 322 | 0.1647 |
| 0.0564 | 3.7541 | 345 | 0.1648 |
| 0.0677 | 4.0 | 368 | 0.1648 |
| 0.0519 | 4.2514 | 391 | 0.1656 |
| 0.0487 | 4.5027 | 414 | 0.1653 |
| 0.0714 | 4.7541 | 437 | 0.1654 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.5.1+cu121
- Datasets 3.5.1
- Tokenizers 0.21.1