See axolotl config
axolotl version: 0.9.2
######################################
# CONTINUED PRE-TRAINING EXAMPLE #
######################################
base_model: Qwen/Qwen3-0.6B-Base # the checkpoint you start from
strict: false
# 1⃣ Replace `datasets:` with `pretraining_dataset:`
pretraining_dataset:
- path: timarni/pretrain-textbooks # or HF dataset id
type: completion # accepted values: text | completion | HF dataset
- path: timarni/pretrain-wikipedia # or HF dataset id
type: completion # accepted values: text | completion | HF dataset
# 2⃣ Remove chat / instruction-tuning options
chat_template:
# adapter / lora stay null/false (full-parameter training)
# 3⃣ Training hyper-params (see Section 3)
sequence_len: 4096
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
micro_batch_size: 1
gradient_accumulation_steps: 2
max_steps: 12000 # num_epochs does not work for streaming mode in pretraining
learning_rate: 1e-5
lr_scheduler: cosine
warmup_steps: 100
weight_decay: 0.01
optimizer: adamw_torch
bf16: auto
tf32: true
flash_attention: true
gradient_checkpointing: offload
val_set_size: 0.0 # usually no dev set for plain pre-training
output_dir: ./outputs/qwen3_pretraining_full
dataset_prepared_path: last_run_prepared
wandb_project: mnlp_project
wandb_entity: tim-arni
wandb_name: qwen3-0.6B-pretraining_full
outputs/qwen3_pretraining_full
This model is a fine-tuned version of Qwen/Qwen3-0.6B-Base on an unknown dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- total_eval_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 12000
Training results
Framework versions
- Transformers 4.51.3
- Pytorch 2.5.1+cu121
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 11
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for timarni/qwen3_stem_pretrained
Base model
Qwen/Qwen3-0.6B-Base