Model card for seresnextaa101d_32x8d.sw_in12k_ft_in1k_288
A SE-ResNeXt-D (Rectangle-2 Anti-Aliasing) image classification model with Squeeze-and-Excitation channel attention.
This model features:
- ReLU activations
- 3-layer stem of 3x3 convolutions with pooling
- 2x2 average pool + 1x1 convolution shortcut downsample
- grouped 3x3 bottleneck convolutions
- Squeeze-and-Excitation channel attention
Pretrained on ImageNet-12k and fine-tuned on ImageNet-1k by Ross Wightman in timm
using recipe template described below.
Recipe details:
- Based on Swin Transformer train / pretrain recipe with modifications (related to both DeiT and ConvNeXt recipes)
- AdamW optimizer, gradient clipping, EMA weight averaging
- Cosine LR schedule with warmup
Model Details
- Model Type: Image classification / feature backbone
- Model Stats:
- Params (M): 93.6
- GMACs: 28.5
- Activations (M): 56.4
- Image size: train = 288 x 288, test = 320 x 320
- Papers:
- Aggregated Residual Transformations for Deep Neural Networks: https://arxiv.org/abs/1611.05431
- Making Convolutional Networks Shift-Invariant Again: https://arxiv.org/abs/1904.11486
- Deep Residual Learning for Image Recognition: https://arxiv.org/abs/1512.03385
- Squeeze-and-Excitation Networks: https://arxiv.org/abs/1709.01507
- Bag of Tricks for Image Classification with Convolutional Neural Networks: https://arxiv.org/abs/1812.01187
- Original: https://github.com/huggingface/pytorch-image-models
Model Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('seresnextaa101d_32x8d.sw_in12k_ft_in1k_288', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Feature Map Extraction
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'seresnextaa101d_32x8d.sw_in12k_ft_in1k_288',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 64, 144, 144])
# torch.Size([1, 256, 72, 72])
# torch.Size([1, 512, 36, 36])
# torch.Size([1, 1024, 18, 18])
# torch.Size([1, 2048, 9, 9])
print(o.shape)
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'seresnextaa101d_32x8d.sw_in12k_ft_in1k_288',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 2048, 9, 9) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
Model Comparison
Explore the dataset and runtime metrics of this model in timm model results.
model | img_size | top1 | top5 | param_count | gmacs | macts | img/sec |
---|---|---|---|---|---|---|---|
seresnextaa101d_32x8d.sw_in12k_ft_in1k_288 | 320 | 86.72 | 98.17 | 93.6 | 35.2 | 69.7 | 451 |
seresnextaa101d_32x8d.sw_in12k_ft_in1k_288 | 288 | 86.51 | 98.08 | 93.6 | 28.5 | 56.4 | 560 |
seresnextaa101d_32x8d.sw_in12k_ft_in1k | 288 | 86.49 | 98.03 | 93.6 | 28.5 | 56.4 | 557 |
seresnextaa101d_32x8d.sw_in12k_ft_in1k | 224 | 85.96 | 97.82 | 93.6 | 17.2 | 34.2 | 923 |
resnext101_32x32d.fb_wsl_ig1b_ft_in1k | 224 | 85.11 | 97.44 | 468.5 | 87.3 | 91.1 | 254 |
resnetrs420.tf_in1k | 416 | 85.0 | 97.12 | 191.9 | 108.4 | 213.8 | 134 |
ecaresnet269d.ra2_in1k | 352 | 84.96 | 97.22 | 102.1 | 50.2 | 101.2 | 291 |
ecaresnet269d.ra2_in1k | 320 | 84.73 | 97.18 | 102.1 | 41.5 | 83.7 | 353 |
resnetrs350.tf_in1k | 384 | 84.71 | 96.99 | 164.0 | 77.6 | 154.7 | 183 |
seresnextaa101d_32x8d.ah_in1k | 288 | 84.57 | 97.08 | 93.6 | 28.5 | 56.4 | 557 |
resnetrs200.tf_in1k | 320 | 84.45 | 97.08 | 93.2 | 31.5 | 67.8 | 446 |
resnetrs270.tf_in1k | 352 | 84.43 | 96.97 | 129.9 | 51.1 | 105.5 | 280 |
seresnext101d_32x8d.ah_in1k | 288 | 84.36 | 96.92 | 93.6 | 27.6 | 53.0 | 595 |
seresnet152d.ra2_in1k | 320 | 84.35 | 97.04 | 66.8 | 24.1 | 47.7 | 610 |
resnetrs350.tf_in1k | 288 | 84.3 | 96.94 | 164.0 | 43.7 | 87.1 | 333 |
resnext101_32x8d.fb_swsl_ig1b_ft_in1k | 224 | 84.28 | 97.17 | 88.8 | 16.5 | 31.2 | 1100 |
resnetrs420.tf_in1k | 320 | 84.24 | 96.86 | 191.9 | 64.2 | 126.6 | 228 |
seresnext101_32x8d.ah_in1k | 288 | 84.19 | 96.87 | 93.6 | 27.2 | 51.6 | 613 |
resnext101_32x16d.fb_wsl_ig1b_ft_in1k | 224 | 84.18 | 97.19 | 194.0 | 36.3 | 51.2 | 581 |
resnetaa101d.sw_in12k_ft_in1k | 288 | 84.11 | 97.11 | 44.6 | 15.1 | 29.0 | 1144 |
resnet200d.ra2_in1k | 320 | 83.97 | 96.82 | 64.7 | 31.2 | 67.3 | 518 |
resnetrs200.tf_in1k | 256 | 83.87 | 96.75 | 93.2 | 20.2 | 43.4 | 692 |
seresnextaa101d_32x8d.ah_in1k | 224 | 83.86 | 96.65 | 93.6 | 17.2 | 34.2 | 923 |
resnetrs152.tf_in1k | 320 | 83.72 | 96.61 | 86.6 | 24.3 | 48.1 | 617 |
seresnet152d.ra2_in1k | 256 | 83.69 | 96.78 | 66.8 | 15.4 | 30.6 | 943 |
seresnext101d_32x8d.ah_in1k | 224 | 83.68 | 96.61 | 93.6 | 16.7 | 32.0 | 986 |
resnet152d.ra2_in1k | 320 | 83.67 | 96.74 | 60.2 | 24.1 | 47.7 | 706 |
resnetrs270.tf_in1k | 256 | 83.59 | 96.61 | 129.9 | 27.1 | 55.8 | 526 |
seresnext101_32x8d.ah_in1k | 224 | 83.58 | 96.4 | 93.6 | 16.5 | 31.2 | 1013 |
resnetaa101d.sw_in12k_ft_in1k | 224 | 83.54 | 96.83 | 44.6 | 9.1 | 17.6 | 1864 |
resnet152.a1h_in1k | 288 | 83.46 | 96.54 | 60.2 | 19.1 | 37.3 | 904 |
resnext101_32x16d.fb_swsl_ig1b_ft_in1k | 224 | 83.35 | 96.85 | 194.0 | 36.3 | 51.2 | 582 |
resnet200d.ra2_in1k | 256 | 83.23 | 96.53 | 64.7 | 20.0 | 43.1 | 809 |
resnext101_32x4d.fb_swsl_ig1b_ft_in1k | 224 | 83.22 | 96.75 | 44.2 | 8.0 | 21.2 | 1814 |
resnext101_64x4d.c1_in1k | 288 | 83.16 | 96.38 | 83.5 | 25.7 | 51.6 | 590 |
resnet152d.ra2_in1k | 256 | 83.14 | 96.38 | 60.2 | 15.4 | 30.5 | 1096 |
resnet101d.ra2_in1k | 320 | 83.02 | 96.45 | 44.6 | 16.5 | 34.8 | 992 |
ecaresnet101d.miil_in1k | 288 | 82.98 | 96.54 | 44.6 | 13.4 | 28.2 | 1077 |
resnext101_64x4d.tv_in1k | 224 | 82.98 | 96.25 | 83.5 | 15.5 | 31.2 | 989 |
resnetrs152.tf_in1k | 256 | 82.86 | 96.28 | 86.6 | 15.6 | 30.8 | 951 |
resnext101_32x8d.tv2_in1k | 224 | 82.83 | 96.22 | 88.8 | 16.5 | 31.2 | 1099 |
resnet152.a1h_in1k | 224 | 82.8 | 96.13 | 60.2 | 11.6 | 22.6 | 1486 |
resnet101.a1h_in1k | 288 | 82.8 | 96.32 | 44.6 | 13.0 | 26.8 | 1291 |
resnet152.a1_in1k | 288 | 82.74 | 95.71 | 60.2 | 19.1 | 37.3 | 905 |
resnext101_32x8d.fb_wsl_ig1b_ft_in1k | 224 | 82.69 | 96.63 | 88.8 | 16.5 | 31.2 | 1100 |
resnet152.a2_in1k | 288 | 82.62 | 95.75 | 60.2 | 19.1 | 37.3 | 904 |
resnetaa50d.sw_in12k_ft_in1k | 288 | 82.61 | 96.49 | 25.6 | 8.9 | 20.6 | 1729 |
resnet61q.ra2_in1k | 288 | 82.53 | 96.13 | 36.8 | 9.9 | 21.5 | 1773 |
wide_resnet101_2.tv2_in1k | 224 | 82.5 | 96.02 | 126.9 | 22.8 | 21.2 | 1078 |
resnext101_64x4d.c1_in1k | 224 | 82.46 | 95.92 | 83.5 | 15.5 | 31.2 | 987 |
resnet51q.ra2_in1k | 288 | 82.36 | 96.18 | 35.7 | 8.1 | 20.9 | 1964 |
ecaresnet50t.ra2_in1k | 320 | 82.35 | 96.14 | 25.6 | 8.8 | 24.1 | 1386 |
resnet101.a1_in1k | 288 | 82.31 | 95.63 | 44.6 | 13.0 | 26.8 | 1291 |
resnetrs101.tf_in1k | 288 | 82.29 | 96.01 | 63.6 | 13.6 | 28.5 | 1078 |
resnet152.tv2_in1k | 224 | 82.29 | 96.0 | 60.2 | 11.6 | 22.6 | 1484 |
wide_resnet50_2.racm_in1k | 288 | 82.27 | 96.06 | 68.9 | 18.9 | 23.8 | 1176 |
resnet101d.ra2_in1k | 256 | 82.26 | 96.07 | 44.6 | 10.6 | 22.2 | 1542 |
resnet101.a2_in1k | 288 | 82.24 | 95.73 | 44.6 | 13.0 | 26.8 | 1290 |
seresnext50_32x4d.racm_in1k | 288 | 82.2 | 96.14 | 27.6 | 7.0 | 23.8 | 1547 |
ecaresnet101d.miil_in1k | 224 | 82.18 | 96.05 | 44.6 | 8.1 | 17.1 | 1771 |
resnext50_32x4d.fb_swsl_ig1b_ft_in1k | 224 | 82.17 | 96.22 | 25.0 | 4.3 | 14.4 | 2943 |
ecaresnet50t.a1_in1k | 288 | 82.12 | 95.65 | 25.6 | 7.1 | 19.6 | 1704 |
resnext50_32x4d.a1h_in1k | 288 | 82.03 | 95.94 | 25.0 | 7.0 | 23.8 | 1745 |
ecaresnet101d_pruned.miil_in1k | 288 | 82.0 | 96.15 | 24.9 | 5.8 | 12.7 | 1787 |
resnet61q.ra2_in1k | 256 | 81.99 | 95.85 | 36.8 | 7.8 | 17.0 | 2230 |
resnext101_32x8d.tv2_in1k | 176 | 81.98 | 95.72 | 88.8 | 10.3 | 19.4 | 1768 |
resnet152.a1_in1k | 224 | 81.97 | 95.24 | 60.2 | 11.6 | 22.6 | 1486 |
resnet101.a1h_in1k | 224 | 81.93 | 95.75 | 44.6 | 7.8 | 16.2 | 2122 |
resnet101.tv2_in1k | 224 | 81.9 | 95.77 | 44.6 | 7.8 | 16.2 | 2118 |
resnext101_32x16d.fb_ssl_yfcc100m_ft_in1k | 224 | 81.84 | 96.1 | 194.0 | 36.3 | 51.2 | 583 |
resnet51q.ra2_in1k | 256 | 81.78 | 95.94 | 35.7 | 6.4 | 16.6 | 2471 |
resnet152.a2_in1k | 224 | 81.77 | 95.22 | 60.2 | 11.6 | 22.6 | 1485 |
resnetaa50d.sw_in12k_ft_in1k | 224 | 81.74 | 96.06 | 25.6 | 5.4 | 12.4 | 2813 |
ecaresnet50t.a2_in1k | 288 | 81.65 | 95.54 | 25.6 | 7.1 | 19.6 | 1703 |
ecaresnet50d.miil_in1k | 288 | 81.64 | 95.88 | 25.6 | 7.2 | 19.7 | 1694 |
resnext101_32x8d.fb_ssl_yfcc100m_ft_in1k | 224 | 81.62 | 96.04 | 88.8 | 16.5 | 31.2 | 1101 |
wide_resnet50_2.tv2_in1k | 224 | 81.61 | 95.76 | 68.9 | 11.4 | 14.4 | 1930 |
resnetaa50.a1h_in1k | 288 | 81.61 | 95.83 | 25.6 | 8.5 | 19.2 | 1868 |
resnet101.a1_in1k | 224 | 81.5 | 95.16 | 44.6 | 7.8 | 16.2 | 2125 |
resnext50_32x4d.a1_in1k | 288 | 81.48 | 95.16 | 25.0 | 7.0 | 23.8 | 1745 |
gcresnet50t.ra2_in1k | 288 | 81.47 | 95.71 | 25.9 | 6.9 | 18.6 | 2071 |
wide_resnet50_2.racm_in1k | 224 | 81.45 | 95.53 | 68.9 | 11.4 | 14.4 | 1929 |
resnet50d.a1_in1k | 288 | 81.44 | 95.22 | 25.6 | 7.2 | 19.7 | 1908 |
ecaresnet50t.ra2_in1k | 256 | 81.44 | 95.67 | 25.6 | 5.6 | 15.4 | 2168 |
ecaresnetlight.miil_in1k | 288 | 81.4 | 95.82 | 30.2 | 6.8 | 13.9 | 2132 |
resnet50d.ra2_in1k | 288 | 81.37 | 95.74 | 25.6 | 7.2 | 19.7 | 1910 |
resnet101.a2_in1k | 224 | 81.32 | 95.19 | 44.6 | 7.8 | 16.2 | 2125 |
seresnet50.ra2_in1k | 288 | 81.3 | 95.65 | 28.1 | 6.8 | 18.4 | 1803 |
resnext50_32x4d.a2_in1k | 288 | 81.3 | 95.11 | 25.0 | 7.0 | 23.8 | 1746 |
seresnext50_32x4d.racm_in1k | 224 | 81.27 | 95.62 | 27.6 | 4.3 | 14.4 | 2591 |
ecaresnet50t.a1_in1k | 224 | 81.26 | 95.16 | 25.6 | 4.3 | 11.8 | 2823 |
gcresnext50ts.ch_in1k | 288 | 81.23 | 95.54 | 15.7 | 4.8 | 19.6 | 2117 |
senet154.gluon_in1k | 224 | 81.23 | 95.35 | 115.1 | 20.8 | 38.7 | 545 |
resnet50.a1_in1k | 288 | 81.22 | 95.11 | 25.6 | 6.8 | 18.4 | 2089 |
resnet50_gn.a1h_in1k | 288 | 81.22 | 95.63 | 25.6 | 6.8 | 18.4 | 676 |
resnet50d.a2_in1k | 288 | 81.18 | 95.09 | 25.6 | 7.2 | 19.7 | 1908 |
resnet50.fb_swsl_ig1b_ft_in1k | 224 | 81.18 | 95.98 | 25.6 | 4.1 | 11.1 | 3455 |
resnext50_32x4d.tv2_in1k | 224 | 81.17 | 95.34 | 25.0 | 4.3 | 14.4 | 2933 |
resnext50_32x4d.a1h_in1k | 224 | 81.1 | 95.33 | 25.0 | 4.3 | 14.4 | 2934 |
seresnet50.a2_in1k | 288 | 81.1 | 95.23 | 28.1 | 6.8 | 18.4 | 1801 |
seresnet50.a1_in1k | 288 | 81.1 | 95.12 | 28.1 | 6.8 | 18.4 | 1799 |
resnet152s.gluon_in1k | 224 | 81.02 | 95.41 | 60.3 | 12.9 | 25.0 | 1347 |
resnet50.d_in1k | 288 | 80.97 | 95.44 | 25.6 | 6.8 | 18.4 | 2085 |
gcresnet50t.ra2_in1k | 256 | 80.94 | 95.45 | 25.9 | 5.4 | 14.7 | 2571 |
resnext101_32x4d.fb_ssl_yfcc100m_ft_in1k | 224 | 80.93 | 95.73 | 44.2 | 8.0 | 21.2 | 1814 |
resnet50.c1_in1k | 288 | 80.91 | 95.55 | 25.6 | 6.8 | 18.4 | 2084 |
seresnext101_32x4d.gluon_in1k | 224 | 80.9 | 95.31 | 49.0 | 8.0 | 21.3 | 1585 |
seresnext101_64x4d.gluon_in1k | 224 | 80.9 | 95.3 | 88.2 | 15.5 | 31.2 | 918 |
resnet50.c2_in1k | 288 | 80.86 | 95.52 | 25.6 | 6.8 | 18.4 | 2085 |
resnet50.tv2_in1k | 224 | 80.85 | 95.43 | 25.6 | 4.1 | 11.1 | 3450 |
ecaresnet50t.a2_in1k | 224 | 80.84 | 95.02 | 25.6 | 4.3 | 11.8 | 2821 |
ecaresnet101d_pruned.miil_in1k | 224 | 80.79 | 95.62 | 24.9 | 3.5 | 7.7 | 2961 |
seresnet33ts.ra2_in1k | 288 | 80.79 | 95.36 | 19.8 | 6.0 | 14.8 | 2506 |
ecaresnet50d_pruned.miil_in1k | 288 | 80.79 | 95.58 | 19.9 | 4.2 | 10.6 | 2349 |
resnet50.a2_in1k | 288 | 80.78 | 94.99 | 25.6 | 6.8 | 18.4 | 2088 |
resnet50.b1k_in1k | 288 | 80.71 | 95.43 | 25.6 | 6.8 | 18.4 | 2087 |
resnext50_32x4d.ra_in1k | 288 | 80.7 | 95.39 | 25.0 | 7.0 | 23.8 | 1749 |
resnetrs101.tf_in1k | 192 | 80.69 | 95.24 | 63.6 | 6.0 | 12.7 | 2270 |
resnet50d.a1_in1k | 224 | 80.68 | 94.71 | 25.6 | 4.4 | 11.9 | 3162 |
eca_resnet33ts.ra2_in1k | 288 | 80.68 | 95.36 | 19.7 | 6.0 | 14.8 | 2637 |
resnet50.a1h_in1k | 224 | 80.67 | 95.3 | 25.6 | 4.1 | 11.1 | 3452 |
resnext50d_32x4d.bt_in1k | 288 | 80.67 | 95.42 | 25.0 | 7.4 | 25.1 | 1626 |
resnetaa50.a1h_in1k | 224 | 80.63 | 95.21 | 25.6 | 5.2 | 11.6 | 3034 |
ecaresnet50d.miil_in1k | 224 | 80.61 | 95.32 | 25.6 | 4.4 | 11.9 | 2813 |
resnext101_64x4d.gluon_in1k | 224 | 80.61 | 94.99 | 83.5 | 15.5 | 31.2 | 989 |
gcresnet33ts.ra2_in1k | 288 | 80.6 | 95.31 | 19.9 | 6.0 | 14.8 | 2578 |
gcresnext50ts.ch_in1k | 256 | 80.57 | 95.17 | 15.7 | 3.8 | 15.5 | 2710 |
resnet152.a3_in1k | 224 | 80.56 | 95.0 | 60.2 | 11.6 | 22.6 | 1483 |
resnet50d.ra2_in1k | 224 | 80.53 | 95.16 | 25.6 | 4.4 | 11.9 | 3164 |
resnext50_32x4d.a1_in1k | 224 | 80.53 | 94.46 | 25.0 | 4.3 | 14.4 | 2930 |
wide_resnet101_2.tv2_in1k | 176 | 80.48 | 94.98 | 126.9 | 14.3 | 13.2 | 1719 |
resnet152d.gluon_in1k | 224 | 80.47 | 95.2 | 60.2 | 11.8 | 23.4 | 1428 |
resnet50.b2k_in1k | 288 | 80.45 | 95.32 | 25.6 | 6.8 | 18.4 | 2086 |
ecaresnetlight.miil_in1k | 224 | 80.45 | 95.24 | 30.2 | 4.1 | 8.4 | 3530 |
resnext50_32x4d.a2_in1k | 224 | 80.45 | 94.63 | 25.0 | 4.3 | 14.4 | 2936 |
wide_resnet50_2.tv2_in1k | 176 | 80.43 | 95.09 | 68.9 | 7.3 | 9.0 | 3015 |
resnet101d.gluon_in1k | 224 | 80.42 | 95.01 | 44.6 | 8.1 | 17.0 | 2007 |
resnet50.a1_in1k | 224 | 80.38 | 94.6 | 25.6 | 4.1 | 11.1 | 3461 |
seresnet33ts.ra2_in1k | 256 | 80.36 | 95.1 | 19.8 | 4.8 | 11.7 | 3267 |
resnext101_32x4d.gluon_in1k | 224 | 80.34 | 94.93 | 44.2 | 8.0 | 21.2 | 1814 |
resnext50_32x4d.fb_ssl_yfcc100m_ft_in1k | 224 | 80.32 | 95.4 | 25.0 | 4.3 | 14.4 | 2941 |
resnet101s.gluon_in1k | 224 | 80.28 | 95.16 | 44.7 | 9.2 | 18.6 | 1851 |
seresnet50.ra2_in1k | 224 | 80.26 | 95.08 | 28.1 | 4.1 | 11.1 | 2972 |
resnetblur50.bt_in1k | 288 | 80.24 | 95.24 | 25.6 | 8.5 | 19.9 | 1523 |
resnet50d.a2_in1k | 224 | 80.22 | 94.63 | 25.6 | 4.4 | 11.9 | 3162 |
resnet152.tv2_in1k | 176 | 80.2 | 94.64 | 60.2 | 7.2 | 14.0 | 2346 |
seresnet50.a2_in1k | 224 | 80.08 | 94.74 | 28.1 | 4.1 | 11.1 | 2969 |
eca_resnet33ts.ra2_in1k | 256 | 80.08 | 94.97 | 19.7 | 4.8 | 11.7 | 3284 |
gcresnet33ts.ra2_in1k | 256 | 80.06 | 94.99 | 19.9 | 4.8 | 11.7 | 3216 |
resnet50_gn.a1h_in1k | 224 | 80.06 | 94.95 | 25.6 | 4.1 | 11.1 | 1109 |
seresnet50.a1_in1k | 224 | 80.02 | 94.71 | 28.1 | 4.1 | 11.1 | 2962 |
resnet50.ram_in1k | 288 | 79.97 | 95.05 | 25.6 | 6.8 | 18.4 | 2086 |
resnet152c.gluon_in1k | 224 | 79.92 | 94.84 | 60.2 | 11.8 | 23.4 | 1455 |
seresnext50_32x4d.gluon_in1k | 224 | 79.91 | 94.82 | 27.6 | 4.3 | 14.4 | 2591 |
resnet50.d_in1k | 224 | 79.91 | 94.67 | 25.6 | 4.1 | 11.1 | 3456 |
resnet101.tv2_in1k | 176 | 79.9 | 94.6 | 44.6 | 4.9 | 10.1 | 3341 |
resnetrs50.tf_in1k | 224 | 79.89 | 94.97 | 35.7 | 4.5 | 12.1 | 2774 |
resnet50.c2_in1k | 224 | 79.88 | 94.87 | 25.6 | 4.1 | 11.1 | 3455 |
ecaresnet26t.ra2_in1k | 320 | 79.86 | 95.07 | 16.0 | 5.2 | 16.4 | 2168 |
resnet50.a2_in1k | 224 | 79.85 | 94.56 | 25.6 | 4.1 | 11.1 | 3460 |
resnet50.ra_in1k | 288 | 79.83 | 94.97 | 25.6 | 6.8 | 18.4 | 2087 |
resnet101.a3_in1k | 224 | 79.82 | 94.62 | 44.6 | 7.8 | 16.2 | 2114 |
resnext50_32x4d.ra_in1k | 224 | 79.76 | 94.6 | 25.0 | 4.3 | 14.4 | 2943 |
resnet50.c1_in1k | 224 | 79.74 | 94.95 | 25.6 | 4.1 | 11.1 | 3455 |
ecaresnet50d_pruned.miil_in1k | 224 | 79.74 | 94.87 | 19.9 | 2.5 | 6.4 | 3929 |
resnet33ts.ra2_in1k | 288 | 79.71 | 94.83 | 19.7 | 6.0 | 14.8 | 2710 |
resnet152.gluon_in1k | 224 | 79.68 | 94.74 | 60.2 | 11.6 | 22.6 | 1486 |
resnext50d_32x4d.bt_in1k | 224 | 79.67 | 94.87 | 25.0 | 4.5 | 15.2 | 2729 |
resnet50.bt_in1k | 288 | 79.63 | 94.91 | 25.6 | 6.8 | 18.4 | 2086 |
ecaresnet50t.a3_in1k | 224 | 79.56 | 94.72 | 25.6 | 4.3 | 11.8 | 2805 |
resnet101c.gluon_in1k | 224 | 79.53 | 94.58 | 44.6 | 8.1 | 17.0 | 2062 |
resnet50.b1k_in1k | 224 | 79.52 | 94.61 | 25.6 | 4.1 | 11.1 | 3459 |
resnet50.tv2_in1k | 176 | 79.42 | 94.64 | 25.6 | 2.6 | 6.9 | 5397 |
resnet32ts.ra2_in1k | 288 | 79.4 | 94.66 | 18.0 | 5.9 | 14.6 | 2752 |
resnet50.b2k_in1k | 224 | 79.38 | 94.57 | 25.6 | 4.1 | 11.1 | 3459 |
resnext50_32x4d.tv2_in1k | 176 | 79.37 | 94.3 | 25.0 | 2.7 | 9.0 | 4577 |
resnext50_32x4d.gluon_in1k | 224 | 79.36 | 94.43 | 25.0 | 4.3 | 14.4 | 2942 |
resnext101_32x8d.tv_in1k | 224 | 79.31 | 94.52 | 88.8 | 16.5 | 31.2 | 1100 |
resnet101.gluon_in1k | 224 | 79.31 | 94.53 | 44.6 | 7.8 | 16.2 | 2125 |
resnetblur50.bt_in1k | 224 | 79.31 | 94.63 | 25.6 | 5.2 | 12.0 | 2524 |
resnet50.a1h_in1k | 176 | 79.27 | 94.49 | 25.6 | 2.6 | 6.9 | 5404 |
resnext50_32x4d.a3_in1k | 224 | 79.25 | 94.31 | 25.0 | 4.3 | 14.4 | 2931 |
resnet50.fb_ssl_yfcc100m_ft_in1k | 224 | 79.22 | 94.84 | 25.6 | 4.1 | 11.1 | 3451 |
resnet33ts.ra2_in1k | 256 | 79.21 | 94.56 | 19.7 | 4.8 | 11.7 | 3392 |
resnet50d.gluon_in1k | 224 | 79.07 | 94.48 | 25.6 | 4.4 | 11.9 | 3162 |
resnet50.ram_in1k | 224 | 79.03 | 94.38 | 25.6 | 4.1 | 11.1 | 3453 |
resnet50.am_in1k | 224 | 79.01 | 94.39 | 25.6 | 4.1 | 11.1 | 3461 |
resnet32ts.ra2_in1k | 256 | 79.01 | 94.37 | 18.0 | 4.6 | 11.6 | 3440 |
ecaresnet26t.ra2_in1k | 256 | 78.9 | 94.54 | 16.0 | 3.4 | 10.5 | 3421 |
resnet152.a3_in1k | 160 | 78.89 | 94.11 | 60.2 | 5.9 | 11.5 | 2745 |
wide_resnet101_2.tv_in1k | 224 | 78.84 | 94.28 | 126.9 | 22.8 | 21.2 | 1079 |
seresnext26d_32x4d.bt_in1k | 288 | 78.83 | 94.24 | 16.8 | 4.5 | 16.8 | 2251 |
resnet50.ra_in1k | 224 | 78.81 | 94.32 | 25.6 | 4.1 | 11.1 | 3454 |
seresnext26t_32x4d.bt_in1k | 288 | 78.74 | 94.33 | 16.8 | 4.5 | 16.7 | 2264 |
resnet50s.gluon_in1k | 224 | 78.72 | 94.23 | 25.7 | 5.5 | 13.5 | 2796 |
resnet50d.a3_in1k | 224 | 78.71 | 94.24 | 25.6 | 4.4 | 11.9 | 3154 |
wide_resnet50_2.tv_in1k | 224 | 78.47 | 94.09 | 68.9 | 11.4 | 14.4 | 1934 |
resnet50.bt_in1k | 224 | 78.46 | 94.27 | 25.6 | 4.1 | 11.1 | 3454 |
resnet34d.ra2_in1k | 288 | 78.43 | 94.35 | 21.8 | 6.5 | 7.5 | 3291 |
gcresnext26ts.ch_in1k | 288 | 78.42 | 94.04 | 10.5 | 3.1 | 13.3 | 3226 |
resnet26t.ra2_in1k | 320 | 78.33 | 94.13 | 16.0 | 5.2 | 16.4 | 2391 |
resnet152.tv_in1k | 224 | 78.32 | 94.04 | 60.2 | 11.6 | 22.6 | 1487 |
seresnext26ts.ch_in1k | 288 | 78.28 | 94.1 | 10.4 | 3.1 | 13.3 | 3062 |
bat_resnext26ts.ch_in1k | 256 | 78.25 | 94.1 | 10.7 | 2.5 | 12.5 | 3393 |
resnet50.a3_in1k | 224 | 78.06 | 93.78 | 25.6 | 4.1 | 11.1 | 3450 |
resnet50c.gluon_in1k | 224 | 78.0 | 93.99 | 25.6 | 4.4 | 11.9 | 3286 |
eca_resnext26ts.ch_in1k | 288 | 78.0 | 93.91 | 10.3 | 3.1 | 13.3 | 3297 |
seresnext26t_32x4d.bt_in1k | 224 | 77.98 | 93.75 | 16.8 | 2.7 | 10.1 | 3841 |
resnet34.a1_in1k | 288 | 77.92 | 93.77 | 21.8 | 6.1 | 6.2 | 3609 |
resnet101.a3_in1k | 160 | 77.88 | 93.71 | 44.6 | 4.0 | 8.3 | 3926 |
resnet26t.ra2_in1k | 256 | 77.87 | 93.84 | 16.0 | 3.4 | 10.5 | 3772 |
seresnext26ts.ch_in1k | 256 | 77.86 | 93.79 | 10.4 | 2.4 | 10.5 | 4263 |
resnetrs50.tf_in1k | 160 | 77.82 | 93.81 | 35.7 | 2.3 | 6.2 | 5238 |
gcresnext26ts.ch_in1k | 256 | 77.81 | 93.82 | 10.5 | 2.4 | 10.5 | 4183 |
ecaresnet50t.a3_in1k | 160 | 77.79 | 93.6 | 25.6 | 2.2 | 6.0 | 5329 |
resnext50_32x4d.a3_in1k | 160 | 77.73 | 93.32 | 25.0 | 2.2 | 7.4 | 5576 |
resnext50_32x4d.tv_in1k | 224 | 77.61 | 93.7 | 25.0 | 4.3 | 14.4 | 2944 |
seresnext26d_32x4d.bt_in1k | 224 | 77.59 | 93.61 | 16.8 | 2.7 | 10.2 | 3807 |
resnet50.gluon_in1k | 224 | 77.58 | 93.72 | 25.6 | 4.1 | 11.1 | 3455 |
eca_resnext26ts.ch_in1k | 256 | 77.44 | 93.56 | 10.3 | 2.4 | 10.5 | 4284 |
resnet26d.bt_in1k | 288 | 77.41 | 93.63 | 16.0 | 4.3 | 13.5 | 2907 |
resnet101.tv_in1k | 224 | 77.38 | 93.54 | 44.6 | 7.8 | 16.2 | 2125 |
resnet50d.a3_in1k | 160 | 77.22 | 93.27 | 25.6 | 2.2 | 6.1 | 5982 |
resnext26ts.ra2_in1k | 288 | 77.17 | 93.47 | 10.3 | 3.1 | 13.3 | 3392 |
resnet34.a2_in1k | 288 | 77.15 | 93.27 | 21.8 | 6.1 | 6.2 | 3615 |
resnet34d.ra2_in1k | 224 | 77.1 | 93.37 | 21.8 | 3.9 | 4.5 | 5436 |
seresnet50.a3_in1k | 224 | 77.02 | 93.07 | 28.1 | 4.1 | 11.1 | 2952 |
resnext26ts.ra2_in1k | 256 | 76.78 | 93.13 | 10.3 | 2.4 | 10.5 | 4410 |
resnet26d.bt_in1k | 224 | 76.7 | 93.17 | 16.0 | 2.6 | 8.2 | 4859 |
resnet34.bt_in1k | 288 | 76.5 | 93.35 | 21.8 | 6.1 | 6.2 | 3617 |
resnet34.a1_in1k | 224 | 76.42 | 92.87 | 21.8 | 3.7 | 3.7 | 5984 |
resnet26.bt_in1k | 288 | 76.35 | 93.18 | 16.0 | 3.9 | 12.2 | 3331 |
resnet50.tv_in1k | 224 | 76.13 | 92.86 | 25.6 | 4.1 | 11.1 | 3457 |
resnet50.a3_in1k | 160 | 75.96 | 92.5 | 25.6 | 2.1 | 5.7 | 6490 |
resnet34.a2_in1k | 224 | 75.52 | 92.44 | 21.8 | 3.7 | 3.7 | 5991 |
resnet26.bt_in1k | 224 | 75.3 | 92.58 | 16.0 | 2.4 | 7.4 | 5583 |
resnet34.bt_in1k | 224 | 75.16 | 92.18 | 21.8 | 3.7 | 3.7 | 5994 |
seresnet50.a3_in1k | 160 | 75.1 | 92.08 | 28.1 | 2.1 | 5.7 | 5513 |
resnet34.gluon_in1k | 224 | 74.57 | 91.98 | 21.8 | 3.7 | 3.7 | 5984 |
resnet18d.ra2_in1k | 288 | 73.81 | 91.83 | 11.7 | 3.4 | 5.4 | 5196 |
resnet34.tv_in1k | 224 | 73.32 | 91.42 | 21.8 | 3.7 | 3.7 | 5979 |
resnet18.fb_swsl_ig1b_ft_in1k | 224 | 73.28 | 91.73 | 11.7 | 1.8 | 2.5 | 10213 |
resnet18.a1_in1k | 288 | 73.16 | 91.03 | 11.7 | 3.0 | 4.1 | 6050 |
resnet34.a3_in1k | 224 | 72.98 | 91.11 | 21.8 | 3.7 | 3.7 | 5967 |
resnet18.fb_ssl_yfcc100m_ft_in1k | 224 | 72.6 | 91.42 | 11.7 | 1.8 | 2.5 | 10213 |
resnet18.a2_in1k | 288 | 72.37 | 90.59 | 11.7 | 3.0 | 4.1 | 6051 |
resnet14t.c3_in1k | 224 | 72.26 | 90.31 | 10.1 | 1.7 | 5.8 | 7026 |
resnet18d.ra2_in1k | 224 | 72.26 | 90.68 | 11.7 | 2.1 | 3.3 | 8707 |
resnet18.a1_in1k | 224 | 71.49 | 90.07 | 11.7 | 1.8 | 2.5 | 10187 |
resnet14t.c3_in1k | 176 | 71.31 | 89.69 | 10.1 | 1.1 | 3.6 | 10970 |
resnet18.gluon_in1k | 224 | 70.84 | 89.76 | 11.7 | 1.8 | 2.5 | 10210 |
resnet18.a2_in1k | 224 | 70.64 | 89.47 | 11.7 | 1.8 | 2.5 | 10194 |
resnet34.a3_in1k | 160 | 70.56 | 89.52 | 21.8 | 1.9 | 1.9 | 10737 |
resnet18.tv_in1k | 224 | 69.76 | 89.07 | 11.7 | 1.8 | 2.5 | 10205 |
resnet10t.c3_in1k | 224 | 68.34 | 88.03 | 5.4 | 1.1 | 2.4 | 13079 |
resnet18.a3_in1k | 224 | 68.25 | 88.17 | 11.7 | 1.8 | 2.5 | 10167 |
resnet10t.c3_in1k | 176 | 66.71 | 86.96 | 5.4 | 0.7 | 1.5 | 20327 |
resnet18.a3_in1k | 160 | 65.66 | 86.26 | 11.7 | 0.9 | 1.3 | 18229 |
Citation
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
@article{Xie2016,
title={Aggregated Residual Transformations for Deep Neural Networks},
author={Saining Xie and Ross Girshick and Piotr Dollár and Zhuowen Tu and Kaiming He},
journal={arXiv preprint arXiv:1611.05431},
year={2016}
}
@inproceedings{zhang2019shiftinvar,
title={Making Convolutional Networks Shift-Invariant Again},
author={Zhang, Richard},
booktitle={ICML},
year={2019}
}
@article{He2015,
author = {Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun},
title = {Deep Residual Learning for Image Recognition},
journal = {arXiv preprint arXiv:1512.03385},
year = {2015}
}
@inproceedings{hu2018senet,
title={Squeeze-and-Excitation Networks},
author={Jie Hu and Li Shen and Gang Sun},
journal={IEEE Conference on Computer Vision and Pattern Recognition},
year={2018}
}
@article{He2018BagOT,
title={Bag of Tricks for Image Classification with Convolutional Neural Networks},
author={Tong He and Zhi Zhang and Hang Zhang and Zhongyue Zhang and Junyuan Xie and Mu Li},
journal={2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2018},
pages={558-567}
}
- Downloads last month
- 1,278
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.