Edit model card

Model card for test_efficientnet_ln.r160_in1k

A very small test EfficientNet image classification model for testing and sanity checks. Trained on ImageNet-1k by Ross Wightman.

Model Details

Model Usage

Image Classification

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('test_efficientnet_ln.r160_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

Feature Map Extraction

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'test_efficientnet_ln.r160_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 16, 80, 80])
    #  torch.Size([1, 24, 40, 40])
    #  torch.Size([1, 32, 20, 20])
    #  torch.Size([1, 48, 10, 10])
    #  torch.Size([1, 64, 5, 5])

    print(o.shape)

Image Embeddings

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'test_efficientnet_ln.r160_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 256, 5, 5) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

Model Comparison

By Top-1

model img_size top1 top5 param_count
test_convnext3.r160_in1k 192 54.558 79.356 0.47
test_convnext2.r160_in1k 192 53.62 78.636 0.48
test_convnext2.r160_in1k 160 53.51 78.526 0.48
test_convnext3.r160_in1k 160 53.328 78.318 0.47
test_convnext.r160_in1k 192 48.532 74.944 0.27
test_nfnet.r160_in1k 192 48.298 73.446 0.38
test_convnext.r160_in1k 160 47.764 74.152 0.27
test_nfnet.r160_in1k 160 47.616 72.898 0.38
test_efficientnet.r160_in1k 192 47.164 71.706 0.36
test_efficientnet_evos.r160_in1k 192 46.924 71.53 0.36
test_byobnet.r160_in1k 192 46.688 71.668 0.46
test_efficientnet_evos.r160_in1k 160 46.498 71.006 0.36
test_efficientnet.r160_in1k 160 46.454 71.014 0.36
test_byobnet.r160_in1k 160 45.852 70.996 0.46
test_efficientnet_ln.r160_in1k 192 44.538 69.974 0.36
test_efficientnet_gn.r160_in1k 192 44.448 69.75 0.36
test_efficientnet_ln.r160_in1k 160 43.916 69.404 0.36
test_efficientnet_gn.r160_in1k 160 43.88 69.162 0.36
test_vit2.r160_in1k 192 43.454 69.798 0.46
test_resnet.r160_in1k 192 42.376 68.744 0.47
test_vit2.r160_in1k 160 42.232 68.982 0.46
test_vit.r160_in1k 192 41.984 68.64 0.37
test_resnet.r160_in1k 160 41.578 67.956 0.47
test_vit.r160_in1k 160 40.946 67.362 0.37

Citation

@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
Downloads last month
814
Safetensors
Model size
356k params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train timm/test_efficientnet_ln.r160_in1k

Collection including timm/test_efficientnet_ln.r160_in1k