timm tiny test models
					Collection
				
A collection of very small (~300-500k parameter) models at 160x160 resolution,  for testing purposes. Trained on ImageNet-1k.
					• 
				13 items
				• 
				Updated
					
				•
					
					5
A very small test NF-Net image classification model for testing and sanity checks. Trained on ImageNet-1k by Ross Wightman.
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('test_nfnet.r160_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
    'test_nfnet.r160_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1
for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 64, 80, 80])
    #  torch.Size([1, 32, 40, 40])
    #  torch.Size([1, 64, 20, 20])
    #  torch.Size([1, 96, 10, 10])
    #  torch.Size([1, 192, 5, 5])
    print(o.shape)
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
    'test_nfnet.r160_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 192, 5, 5) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
| model | img_size | top1 | top5 | param_count | 
|---|---|---|---|---|
| test_convnext3.r160_in1k | 192 | 54.558 | 79.356 | 0.47 | 
| test_convnext2.r160_in1k | 192 | 53.62 | 78.636 | 0.48 | 
| test_convnext2.r160_in1k | 160 | 53.51 | 78.526 | 0.48 | 
| test_convnext3.r160_in1k | 160 | 53.328 | 78.318 | 0.47 | 
| test_convnext.r160_in1k | 192 | 48.532 | 74.944 | 0.27 | 
| test_nfnet.r160_in1k | 192 | 48.298 | 73.446 | 0.38 | 
| test_convnext.r160_in1k | 160 | 47.764 | 74.152 | 0.27 | 
| test_nfnet.r160_in1k | 160 | 47.616 | 72.898 | 0.38 | 
| test_efficientnet.r160_in1k | 192 | 47.164 | 71.706 | 0.36 | 
| test_efficientnet_evos.r160_in1k | 192 | 46.924 | 71.53 | 0.36 | 
| test_byobnet.r160_in1k | 192 | 46.688 | 71.668 | 0.46 | 
| test_efficientnet_evos.r160_in1k | 160 | 46.498 | 71.006 | 0.36 | 
| test_efficientnet.r160_in1k | 160 | 46.454 | 71.014 | 0.36 | 
| test_byobnet.r160_in1k | 160 | 45.852 | 70.996 | 0.46 | 
| test_efficientnet_ln.r160_in1k | 192 | 44.538 | 69.974 | 0.36 | 
| test_efficientnet_gn.r160_in1k | 192 | 44.448 | 69.75 | 0.36 | 
| test_efficientnet_ln.r160_in1k | 160 | 43.916 | 69.404 | 0.36 | 
| test_efficientnet_gn.r160_in1k | 160 | 43.88 | 69.162 | 0.36 | 
| test_vit2.r160_in1k | 192 | 43.454 | 69.798 | 0.46 | 
| test_resnet.r160_in1k | 192 | 42.376 | 68.744 | 0.47 | 
| test_vit2.r160_in1k | 160 | 42.232 | 68.982 | 0.46 | 
| test_vit.r160_in1k | 192 | 41.984 | 68.64 | 0.37 | 
| test_resnet.r160_in1k | 160 | 41.578 | 67.956 | 0.47 | 
| test_vit.r160_in1k | 160 | 40.946 | 67.362 | 0.37 | 
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}