Model card for vit_7b_patch16_dinov3.sat493m
A DINOv3 ViT model image feature encoder. Pretrained on SAT-493M with self-supervised DINOv3 method.
Model Notes
- The original model weights ended up with all QKV projection biases being zeroes. For
timm
, have disabled the QKV bias (qkv_bias=False
) for the models and not loaded the zero weights. For some model sizes there are variants with qkvb
in the name that have the bias enabled (qkv_bias=True
), but zero, to match the behaviour of transformers
and original models.
- The original models keep RoPE periods as a persistent
bfloat16
buffer. timm
generates float32
periods at init. This results in some numerical differences, however the timm
approach should be less problematic running on devices without bfloat16 support, and appears to work as well if not slightly better for fine-tuning. model.rope.periods = model.rope.periods.to(torch.bfloat16).to(torch.float32)
will truncate the periods to bfloat16 and result in matching outputs.
Model Details
Model Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('vit_7b_patch16_dinov3.sat493m', pretrained=True)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Feature Map Extraction
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'vit_7b_patch16_dinov3.sat493m',
pretrained=True,
features_only=True,
)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))
for o in output:
print(o.shape)
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'vit_7b_patch16_dinov3.sat493m',
pretrained=True,
num_classes=0,
)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))
output = model.forward_features(transforms(img).unsqueeze(0))
output = model.forward_head(output, pre_logits=True)
Model Comparison
See the associated paper for details on the evaluation protocols
Results for ViT backbones pretrained (or distilled) on web (LVD-1689M)
Model |
IN-ReaL |
IN-R |
Obj.Net |
Ox.-H |
ADE20k |
NYU↓ |
DAVIS |
NAVI |
SPair |
Global Tasks |
|
|
|
|
Dense Tasks |
|
|
|
|
DINOv3 ViT-S/16 |
87.0 |
60.4 |
50.9 |
49.5 |
47.0 |
0.403 |
72.7 |
56.3 |
50.4 |
DINOv3 ViT-S+/16 |
88.0 |
68.8 |
54.6 |
50.0 |
48.8 |
0.399 |
75.5 |
57.1 |
55.2 |
DINOv3 ViT-B/16 |
89.3 |
76.7 |
64.1 |
58.5 |
51.8 |
0.373 |
77.2 |
58.8 |
57.2 |
DINOv3 ViT-L/16 |
90.2 |
88.1 |
74.8 |
63.1 |
54.9 |
0.352 |
79.9 |
62.3 |
61.3 |
DINOv3 ViT-H+/16 |
90.3 |
90.0 |
78.6 |
64.5 |
54.8 |
0.352 |
79.3 |
63.3 |
56.3 |
DINOv3 ViT-7B/16 |
90.4 |
91.1 |
91.1 |
72.8 |
55.9 |
0.309 |
79.7 |
64.4 |
58.7 |
Results for ConvNeXt backbones distilled on web (LVD-1689M)
Model |
IN-ReaL @256px |
IN-ReaL @512px |
IN-R @256px |
IN-R @512px |
Obj.Net @256px |
Obj.Net @512px |
ADE20k |
NYU↓ |
Global Tasks |
|
|
|
|
|
|
Dense Tasks |
|
DINOv3 ConvNeXt Tiny |
86.6 |
87.7 |
73.7 |
74.1 |
52.6 |
58.7 |
42.7 |
0.448 |
DINOv3 ConvNeXt Small |
87.9 |
88.7 |
73.7 |
74.1 |
52.6 |
58.7 |
44.8 |
0.432 |
DINOv3 ConvNeXt Base |
88.5 |
89.2 |
77.2 |
78.2 |
56.2 |
61.3 |
46.3 |
0.420 |
DINOv3 ConvNeXt Large |
88.9 |
89.4 |
81.3 |
82.4 |
59.3 |
65.2 |
47.8 |
0.403 |
Results for ViT backbones pretrained (or distilled) on satellite (SAT-493M)
(GEO-Bench) Classification
Model |
m-BEnet |
m-brick-kiln |
m-eurosat |
m-forestnet |
m-pv4ger |
m-so2sat |
mean |
DINOv3 ViT-L/16 |
73.0 |
96.5 |
94.1 |
60.6 |
96.0 |
57.4 |
79.6 |
DINOv3 ViT-7B/16 |
74.0 |
97.2 |
94.8 |
62.3 |
96.1 |
62.1 |
81.1 |
(GEO-Bench) Segmentation
Model |
m-cashew |
m-chesapeake |
m-NeonTree |
m-nz-cattle |
m-pv4ger-seg |
m-SA-crop |
mean |
DINOv3 ViT-L/16 |
94.2 |
75.6 |
61.8 |
83.7 |
95.2 |
36.8 |
74.5 |
DINOv3 ViT-7B/16 |
94.1 |
76.6 |
62.6 |
83.4 |
95.5 |
37.6 |
75.0 |
Citation
@article{simeoni2025dinov3,
title={DINOv3},
author={Sim{'e}oni, Oriane and Vo, Huy V and Seitzer, Maximilian and Baldassarre, Federico and Oquab, Maxime and Jose, Cijo and Khalidov, Vasil and Szafraniec, Marc and Yi, Seungeun and Ramamonjisoa, Micha{"e}l and others},
journal={arXiv preprint arXiv:2508.10104},
year={2025}
}
}
@article{dosovitskiy2020vit,
title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale},
author={Dosovitskiy, Alexey and Beyer, Lucas and Kolesnikov, Alexander and Weissenborn, Dirk and Zhai, Xiaohua and Unterthiner, Thomas and Dehghani, Mostafa and Minderer, Matthias and Heigold, Georg and Gelly, Sylvain and Uszkoreit, Jakob and Houlsby, Neil},
journal={ICLR},
year={2021}
}
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}