This tiny model is for debugging. It is randomly initialized with the config adapted from microsoft/phi-4.
Example usage:
from transformers import pipeline
model_id = "tiny-random/phi-4"
pipe = pipeline(
"text-generation", model=model_id, device="cuda",
trust_remote_code=True, max_new_tokens=20,
)
print(pipe("Hello World!"))
Codes to create this repo:
import torch
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
GenerationConfig,
pipeline,
set_seed,
)
source_model_id = "microsoft/phi-4"
save_folder = "/tmp/tiny-random/phi-4"
tokenizer = AutoTokenizer.from_pretrained(
source_model_id, trust_remote_code=True,
)
tokenizer.save_pretrained(save_folder)
config = AutoConfig.from_pretrained(
source_model_id, trust_remote_code=True,
)
config.hidden_size = 16
config.intermediate_size = 32
config.num_attention_heads = 2
config.num_hidden_layers = 2
config.num_key_value_heads = 1
model = AutoModelForCausalLM.from_config(
config,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
)
model.generation_config = GenerationConfig.from_pretrained(
source_model_id, trust_remote_code=True,
)
set_seed(42)
with torch.no_grad():
for name, p in sorted(model.named_parameters()):
torch.nn.init.normal_(p, 0, 0.5)
print(name, p.shape)
model.save_pretrained(save_folder)
- Downloads last month
- 11
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.