finetune
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2550
- Cer: 0.0688
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- training_steps: 13000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Cer |
---|---|---|---|---|
10.1502 | 0.15 | 100 | 14.9196 | 0.9877 |
4.006 | 0.3 | 200 | 6.9761 | 1.0 |
3.2832 | 0.45 | 300 | 5.3599 | 1.0 |
3.2479 | 0.6 | 400 | 4.6352 | 0.9910 |
3.2182 | 0.74 | 500 | 4.6517 | 0.9397 |
3.1457 | 0.89 | 600 | 4.0926 | 0.9161 |
3.0171 | 1.04 | 700 | 3.5959 | 0.8029 |
2.7553 | 1.19 | 800 | 2.9406 | 0.7581 |
2.3743 | 1.34 | 900 | 1.8475 | 0.5338 |
2.0073 | 1.49 | 1000 | 1.2319 | 0.3782 |
1.8221 | 1.64 | 1100 | 0.9294 | 0.2806 |
1.6479 | 1.79 | 1200 | 1.0111 | 0.2248 |
1.5471 | 1.93 | 1300 | 0.8513 | 0.1568 |
1.4925 | 2.08 | 1400 | 0.5627 | 0.1451 |
1.429 | 2.23 | 1500 | 0.5325 | 0.1279 |
1.3717 | 2.38 | 1600 | 0.4783 | 0.1149 |
1.3732 | 2.53 | 1700 | 0.4600 | 0.1111 |
1.3256 | 2.68 | 1800 | 0.4764 | 0.1027 |
1.3044 | 2.83 | 1900 | 0.4076 | 0.1012 |
1.2801 | 2.98 | 2000 | 0.4318 | 0.1007 |
1.2196 | 3.12 | 2100 | 0.3867 | 0.1005 |
1.232 | 3.27 | 2200 | 0.4147 | 0.0948 |
1.2354 | 3.42 | 2300 | 0.3613 | 0.0939 |
1.2679 | 3.57 | 2400 | 0.3724 | 0.0941 |
1.1958 | 3.72 | 2500 | 0.3626 | 0.0908 |
1.2021 | 3.87 | 2600 | 0.3800 | 0.0886 |
1.2087 | 4.02 | 2700 | 0.3640 | 0.0879 |
1.1263 | 4.17 | 2800 | 0.3576 | 0.0879 |
1.1494 | 4.32 | 2900 | 0.3402 | 0.0838 |
1.0579 | 4.46 | 3000 | 0.3286 | 0.0847 |
1.0966 | 4.61 | 3100 | 0.3234 | 0.0849 |
1.1303 | 4.76 | 3200 | 0.3244 | 0.0841 |
1.121 | 4.91 | 3300 | 0.3040 | 0.0821 |
1.0772 | 5.06 | 3400 | 0.3252 | 0.0843 |
1.092 | 5.21 | 3500 | 0.3142 | 0.0818 |
1.1267 | 5.36 | 3600 | 0.3844 | 0.0848 |
1.0902 | 5.51 | 3700 | 0.3079 | 0.0807 |
1.0584 | 5.65 | 3800 | 0.3337 | 0.0825 |
1.0457 | 5.8 | 3900 | 0.3302 | 0.0830 |
1.0282 | 5.95 | 4000 | 0.3056 | 0.0813 |
1.0741 | 6.1 | 4100 | 0.2867 | 0.0793 |
0.9822 | 6.25 | 4200 | 0.3002 | 0.0805 |
1.0194 | 6.4 | 4300 | 0.2873 | 0.0781 |
1.0271 | 6.55 | 4400 | 0.2861 | 0.0785 |
1.04 | 6.7 | 4500 | 0.2881 | 0.0787 |
1.0276 | 6.85 | 4600 | 0.2763 | 0.0781 |
1.0476 | 6.99 | 4700 | 0.2911 | 0.0791 |
0.989 | 7.14 | 4800 | 0.2947 | 0.0807 |
1.0077 | 7.29 | 4900 | 0.2905 | 0.0779 |
1.0095 | 7.44 | 5000 | 0.2883 | 0.0786 |
0.9498 | 7.59 | 5100 | 0.2823 | 0.0778 |
0.9677 | 7.74 | 5200 | 0.2870 | 0.0783 |
0.9795 | 7.89 | 5300 | 0.2813 | 0.0769 |
0.9706 | 8.04 | 5400 | 0.2771 | 0.0753 |
0.9582 | 8.18 | 5500 | 0.2798 | 0.0752 |
0.975 | 8.33 | 5600 | 0.2935 | 0.0778 |
0.9624 | 8.48 | 5700 | 0.2827 | 0.0777 |
0.9646 | 8.63 | 5800 | 0.2747 | 0.0741 |
1.0015 | 8.78 | 5900 | 0.2752 | 0.0745 |
0.9449 | 8.93 | 6000 | 0.2740 | 0.0771 |
0.9205 | 9.08 | 6100 | 0.2793 | 0.0773 |
0.9554 | 9.23 | 6200 | 0.2839 | 0.0761 |
0.948 | 9.38 | 6300 | 0.2715 | 0.0755 |
0.9308 | 9.52 | 6400 | 0.2772 | 0.0768 |
0.9227 | 9.67 | 6500 | 0.2751 | 0.0759 |
0.9908 | 9.82 | 6600 | 0.2655 | 0.0767 |
0.974 | 9.97 | 6700 | 0.2752 | 0.0745 |
0.8731 | 10.12 | 6800 | 0.2739 | 0.0747 |
0.9545 | 10.27 | 6900 | 0.2747 | 0.0744 |
0.894 | 10.42 | 7000 | 0.2755 | 0.0752 |
0.9346 | 10.57 | 7100 | 0.2772 | 0.0744 |
0.9275 | 10.71 | 7200 | 0.2714 | 0.0737 |
0.899 | 10.86 | 7300 | 0.2747 | 0.0743 |
0.947 | 11.01 | 7400 | 0.2714 | 0.0748 |
0.8735 | 11.16 | 7500 | 0.2691 | 0.0731 |
0.9134 | 11.31 | 7600 | 0.2737 | 0.0734 |
0.9061 | 11.46 | 7700 | 0.2812 | 0.0750 |
0.9179 | 11.61 | 7800 | 0.2731 | 0.0742 |
0.8899 | 11.76 | 7900 | 0.2716 | 0.0739 |
0.8736 | 11.9 | 8000 | 0.2706 | 0.0735 |
0.9004 | 12.05 | 8100 | 0.2755 | 0.0747 |
0.8915 | 12.2 | 8200 | 0.2798 | 0.0740 |
0.8572 | 12.35 | 8300 | 0.2739 | 0.0743 |
0.8512 | 12.5 | 8400 | 0.2759 | 0.0758 |
0.8617 | 12.65 | 8500 | 0.2715 | 0.0745 |
0.9042 | 12.8 | 8600 | 0.2668 | 0.0726 |
0.8908 | 12.95 | 8700 | 0.2728 | 0.0738 |
0.9157 | 13.1 | 8800 | 0.2672 | 0.0715 |
0.8568 | 13.24 | 8900 | 0.2738 | 0.0742 |
0.8354 | 13.39 | 9000 | 0.2706 | 0.0726 |
0.8462 | 13.54 | 9100 | 0.2681 | 0.0730 |
0.854 | 13.69 | 9200 | 0.2703 | 0.0737 |
0.8584 | 13.84 | 9300 | 0.2663 | 0.0735 |
0.8378 | 13.99 | 9400 | 0.2666 | 0.0739 |
0.8656 | 14.14 | 9500 | 0.2694 | 0.0744 |
0.8072 | 14.29 | 9600 | 0.2742 | 0.0733 |
0.8369 | 14.43 | 9700 | 0.2667 | 0.0735 |
0.8587 | 14.58 | 9800 | 0.2660 | 0.0732 |
0.8227 | 14.73 | 9900 | 0.2625 | 0.0739 |
0.8624 | 14.88 | 10000 | 0.2661 | 0.0731 |
0.8515 | 15.03 | 10100 | 0.2643 | 0.0721 |
0.8688 | 15.18 | 10200 | 0.2664 | 0.0723 |
0.8469 | 15.33 | 10300 | 0.2612 | 0.0713 |
0.874 | 15.48 | 10400 | 0.2656 | 0.0720 |
0.84 | 15.62 | 10500 | 0.2623 | 0.0722 |
0.8408 | 15.77 | 10600 | 0.2625 | 0.0717 |
0.8419 | 15.92 | 10700 | 0.2619 | 0.0720 |
0.8177 | 16.07 | 10800 | 0.2620 | 0.0716 |
0.8168 | 16.22 | 10900 | 0.2687 | 0.0727 |
0.8347 | 16.37 | 11000 | 0.2635 | 0.0713 |
0.8161 | 16.52 | 11100 | 0.2598 | 0.0709 |
0.7783 | 16.67 | 11200 | 0.2705 | 0.0729 |
0.8253 | 16.82 | 11300 | 0.2618 | 0.0722 |
0.8604 | 16.96 | 11400 | 0.2688 | 0.0734 |
0.7786 | 17.11 | 11500 | 0.2654 | 0.0727 |
0.8296 | 17.26 | 11600 | 0.2669 | 0.0724 |
0.805 | 17.41 | 11700 | 0.2667 | 0.0723 |
0.7961 | 17.56 | 11800 | 0.2636 | 0.0725 |
0.8497 | 17.71 | 11900 | 0.2626 | 0.0718 |
0.8123 | 17.86 | 12000 | 0.2636 | 0.0720 |
0.7842 | 18.01 | 12100 | 0.2644 | 0.0720 |
0.8391 | 18.15 | 12200 | 0.2629 | 0.0720 |
0.8324 | 18.3 | 12300 | 0.2656 | 0.0725 |
0.8114 | 18.45 | 12400 | 0.2642 | 0.0714 |
0.8014 | 18.6 | 12500 | 0.2611 | 0.0716 |
0.771 | 18.75 | 12600 | 0.2601 | 0.0721 |
0.7998 | 18.9 | 12700 | 0.2606 | 0.0715 |
0.7253 | 19.05 | 12800 | 0.2617 | 0.0718 |
0.8057 | 19.2 | 12900 | 0.2607 | 0.0718 |
0.817 | 19.35 | 13000 | 0.2614 | 0.0720 |
Framework versions
- Transformers 4.17.0
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support