finetune

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2550
  • Cer: 0.0688

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2000
  • training_steps: 13000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer
10.1502 0.15 100 14.9196 0.9877
4.006 0.3 200 6.9761 1.0
3.2832 0.45 300 5.3599 1.0
3.2479 0.6 400 4.6352 0.9910
3.2182 0.74 500 4.6517 0.9397
3.1457 0.89 600 4.0926 0.9161
3.0171 1.04 700 3.5959 0.8029
2.7553 1.19 800 2.9406 0.7581
2.3743 1.34 900 1.8475 0.5338
2.0073 1.49 1000 1.2319 0.3782
1.8221 1.64 1100 0.9294 0.2806
1.6479 1.79 1200 1.0111 0.2248
1.5471 1.93 1300 0.8513 0.1568
1.4925 2.08 1400 0.5627 0.1451
1.429 2.23 1500 0.5325 0.1279
1.3717 2.38 1600 0.4783 0.1149
1.3732 2.53 1700 0.4600 0.1111
1.3256 2.68 1800 0.4764 0.1027
1.3044 2.83 1900 0.4076 0.1012
1.2801 2.98 2000 0.4318 0.1007
1.2196 3.12 2100 0.3867 0.1005
1.232 3.27 2200 0.4147 0.0948
1.2354 3.42 2300 0.3613 0.0939
1.2679 3.57 2400 0.3724 0.0941
1.1958 3.72 2500 0.3626 0.0908
1.2021 3.87 2600 0.3800 0.0886
1.2087 4.02 2700 0.3640 0.0879
1.1263 4.17 2800 0.3576 0.0879
1.1494 4.32 2900 0.3402 0.0838
1.0579 4.46 3000 0.3286 0.0847
1.0966 4.61 3100 0.3234 0.0849
1.1303 4.76 3200 0.3244 0.0841
1.121 4.91 3300 0.3040 0.0821
1.0772 5.06 3400 0.3252 0.0843
1.092 5.21 3500 0.3142 0.0818
1.1267 5.36 3600 0.3844 0.0848
1.0902 5.51 3700 0.3079 0.0807
1.0584 5.65 3800 0.3337 0.0825
1.0457 5.8 3900 0.3302 0.0830
1.0282 5.95 4000 0.3056 0.0813
1.0741 6.1 4100 0.2867 0.0793
0.9822 6.25 4200 0.3002 0.0805
1.0194 6.4 4300 0.2873 0.0781
1.0271 6.55 4400 0.2861 0.0785
1.04 6.7 4500 0.2881 0.0787
1.0276 6.85 4600 0.2763 0.0781
1.0476 6.99 4700 0.2911 0.0791
0.989 7.14 4800 0.2947 0.0807
1.0077 7.29 4900 0.2905 0.0779
1.0095 7.44 5000 0.2883 0.0786
0.9498 7.59 5100 0.2823 0.0778
0.9677 7.74 5200 0.2870 0.0783
0.9795 7.89 5300 0.2813 0.0769
0.9706 8.04 5400 0.2771 0.0753
0.9582 8.18 5500 0.2798 0.0752
0.975 8.33 5600 0.2935 0.0778
0.9624 8.48 5700 0.2827 0.0777
0.9646 8.63 5800 0.2747 0.0741
1.0015 8.78 5900 0.2752 0.0745
0.9449 8.93 6000 0.2740 0.0771
0.9205 9.08 6100 0.2793 0.0773
0.9554 9.23 6200 0.2839 0.0761
0.948 9.38 6300 0.2715 0.0755
0.9308 9.52 6400 0.2772 0.0768
0.9227 9.67 6500 0.2751 0.0759
0.9908 9.82 6600 0.2655 0.0767
0.974 9.97 6700 0.2752 0.0745
0.8731 10.12 6800 0.2739 0.0747
0.9545 10.27 6900 0.2747 0.0744
0.894 10.42 7000 0.2755 0.0752
0.9346 10.57 7100 0.2772 0.0744
0.9275 10.71 7200 0.2714 0.0737
0.899 10.86 7300 0.2747 0.0743
0.947 11.01 7400 0.2714 0.0748
0.8735 11.16 7500 0.2691 0.0731
0.9134 11.31 7600 0.2737 0.0734
0.9061 11.46 7700 0.2812 0.0750
0.9179 11.61 7800 0.2731 0.0742
0.8899 11.76 7900 0.2716 0.0739
0.8736 11.9 8000 0.2706 0.0735
0.9004 12.05 8100 0.2755 0.0747
0.8915 12.2 8200 0.2798 0.0740
0.8572 12.35 8300 0.2739 0.0743
0.8512 12.5 8400 0.2759 0.0758
0.8617 12.65 8500 0.2715 0.0745
0.9042 12.8 8600 0.2668 0.0726
0.8908 12.95 8700 0.2728 0.0738
0.9157 13.1 8800 0.2672 0.0715
0.8568 13.24 8900 0.2738 0.0742
0.8354 13.39 9000 0.2706 0.0726
0.8462 13.54 9100 0.2681 0.0730
0.854 13.69 9200 0.2703 0.0737
0.8584 13.84 9300 0.2663 0.0735
0.8378 13.99 9400 0.2666 0.0739
0.8656 14.14 9500 0.2694 0.0744
0.8072 14.29 9600 0.2742 0.0733
0.8369 14.43 9700 0.2667 0.0735
0.8587 14.58 9800 0.2660 0.0732
0.8227 14.73 9900 0.2625 0.0739
0.8624 14.88 10000 0.2661 0.0731
0.8515 15.03 10100 0.2643 0.0721
0.8688 15.18 10200 0.2664 0.0723
0.8469 15.33 10300 0.2612 0.0713
0.874 15.48 10400 0.2656 0.0720
0.84 15.62 10500 0.2623 0.0722
0.8408 15.77 10600 0.2625 0.0717
0.8419 15.92 10700 0.2619 0.0720
0.8177 16.07 10800 0.2620 0.0716
0.8168 16.22 10900 0.2687 0.0727
0.8347 16.37 11000 0.2635 0.0713
0.8161 16.52 11100 0.2598 0.0709
0.7783 16.67 11200 0.2705 0.0729
0.8253 16.82 11300 0.2618 0.0722
0.8604 16.96 11400 0.2688 0.0734
0.7786 17.11 11500 0.2654 0.0727
0.8296 17.26 11600 0.2669 0.0724
0.805 17.41 11700 0.2667 0.0723
0.7961 17.56 11800 0.2636 0.0725
0.8497 17.71 11900 0.2626 0.0718
0.8123 17.86 12000 0.2636 0.0720
0.7842 18.01 12100 0.2644 0.0720
0.8391 18.15 12200 0.2629 0.0720
0.8324 18.3 12300 0.2656 0.0725
0.8114 18.45 12400 0.2642 0.0714
0.8014 18.6 12500 0.2611 0.0716
0.771 18.75 12600 0.2601 0.0721
0.7998 18.9 12700 0.2606 0.0715
0.7253 19.05 12800 0.2617 0.0718
0.8057 19.2 12900 0.2607 0.0718
0.817 19.35 13000 0.2614 0.0720

Framework versions

  • Transformers 4.17.0
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support