SentenceTransformer based on Qwen/Qwen3-Embedding-0.6B
This is a sentence-transformers model finetuned from Qwen/Qwen3-Embedding-0.6B on the nq dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Qwen/Qwen3-Embedding-0.6B
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: Qwen3Model
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("tomaarsen/Qwen3-Embedding-0.6B-10-layers")
sentences = [
'The actress was thirteen when she was offered the role of Annie.',
'Contrasting significantly from other soccer leagues in the U.S., WLS intends to be an open entry, promotion and relegation competition.',
'Narsingh Temple is situated at the across of the village just across confluence of Magri State village.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
NanoMSMARCO |
NanoNFCorpus |
NanoNQ |
cosine_accuracy@1 |
0.26 |
0.32 |
0.24 |
cosine_accuracy@3 |
0.54 |
0.44 |
0.46 |
cosine_accuracy@5 |
0.62 |
0.46 |
0.62 |
cosine_accuracy@10 |
0.74 |
0.56 |
0.72 |
cosine_precision@1 |
0.26 |
0.32 |
0.24 |
cosine_precision@3 |
0.18 |
0.2533 |
0.1533 |
cosine_precision@5 |
0.124 |
0.192 |
0.124 |
cosine_precision@10 |
0.074 |
0.156 |
0.076 |
cosine_recall@1 |
0.26 |
0.0299 |
0.23 |
cosine_recall@3 |
0.54 |
0.0456 |
0.45 |
cosine_recall@5 |
0.62 |
0.0527 |
0.58 |
cosine_recall@10 |
0.74 |
0.0769 |
0.68 |
cosine_ndcg@10 |
0.4971 |
0.205 |
0.4494 |
cosine_mrr@10 |
0.4194 |
0.3906 |
0.3822 |
cosine_map@100 |
0.431 |
0.0752 |
0.379 |
Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
NanoBEIREvaluator
with these parameters:{
"dataset_names": [
"msmarco",
"nfcorpus",
"nq"
],
"query_prompts": {
"msmarco": "Instruct: Given a web search query, retrieve relevant passages that answer the query\nQuery:",
"nfcorpus": "Instruct: Given a web search query, retrieve relevant passages that answer the query\nQuery:",
"nq": "Instruct: Given a web search query, retrieve relevant passages that answer the query\nQuery:"
}
}
Metric |
Value |
cosine_accuracy@1 |
0.2733 |
cosine_accuracy@3 |
0.48 |
cosine_accuracy@5 |
0.5667 |
cosine_accuracy@10 |
0.6733 |
cosine_precision@1 |
0.2733 |
cosine_precision@3 |
0.1956 |
cosine_precision@5 |
0.1467 |
cosine_precision@10 |
0.102 |
cosine_recall@1 |
0.1733 |
cosine_recall@3 |
0.3452 |
cosine_recall@5 |
0.4176 |
cosine_recall@10 |
0.499 |
cosine_ndcg@10 |
0.3838 |
cosine_mrr@10 |
0.3974 |
cosine_map@100 |
0.2951 |
Knowledge Distillation
Metric |
Value |
negative_mse |
-0.0473 |
Training Details
Training Dataset
nq
- Dataset: nq at f9e894e
- Size: 197,462 training samples
- Columns:
text
and label
- Approximate statistics based on the first 1000 samples:
|
text |
label |
type |
string |
list |
details |
- min: 27 tokens
- mean: 89.38 tokens
- max: 505 tokens
|
|
- Samples:
text |
label |
Instruct: Given a web search query, retrieve relevant passages that answer the query Query:the movie bernie based on a true story |
[-0.05126953125, -0.0020294189453125, 0.00152587890625, 0.060791015625, 0.022216796875, ...] |
College World Series The College World Series, or CWS, is an annual June baseball tournament held in Omaha, Nebraska. The CWS is the culmination of the National Collegiate Athletic Association (NCAA) Division I Baseball Championship tournament—featuring 64 teams in the first round—which determines the NCAA Division I college baseball champion. The eight participating teams are split into two, four-team, double-elimination brackets, with the winners of each bracket playing in a best-of-three championship series. |
[0.033935546875, -0.0908203125, -0.010498046875, 0.0625, -0.01263427734375, ...] |
Instruct: Given a web search query, retrieve relevant passages that answer the query Query:does the femoral nerve turn into the saphenous nerve |
[0.052978515625, -0.0028228759765625, -0.0022430419921875, 0.0732421875, 0.044677734375, ...] |
- Loss:
MSELoss
Evaluation Datasets
nq
- Dataset: nq at f9e894e
- Size: 3,000 evaluation samples
- Columns:
text
and label
- Approximate statistics based on the first 1000 samples:
|
text |
label |
type |
string |
list |
details |
- min: 21 tokens
- mean: 87.24 tokens
- max: 410 tokens
|
|
- Samples:
text |
label |
Instruct: Given a web search query, retrieve relevant passages that answer the query Query:who was the heir apparent of the austro-hungarian empire in 1914 |
[0.0262451171875, 0.0556640625, -0.0, -0.03076171875, -0.05712890625, ...] |
Instruct: Given a web search query, retrieve relevant passages that answer the query Query:who played tommy in coward of the county |
[-0.00848388671875, -0.02294921875, -0.00182342529296875, 0.060546875, -0.021240234375, ...] |
Vertebra The vertebral arch is formed by pedicles and laminae. Two pedicles extend from the sides of the vertebral body to join the body to the arch. The pedicles are short thick processes that extend, one from each side, posteriorly, from the junctions of the posteriolateral surfaces of the centrum, on its upper surface. From each pedicle a broad plate, a lamina, projects backwards and medialwards to join and complete the vertebral arch and form the posterior border of the vertebral foramen, which completes the triangle of the vertebral foramen.[6] The upper surfaces of the laminae are rough to give attachment to the ligamenta flava. These ligaments connect the laminae of adjacent vertebra along the length of the spine from the level of the second cervical vertebra. Above and below the pedicles are shallow depressions called vertebral notches (superior and inferior). When the vertebrae articulate the notches align with those on adjacent vertebrae and these form the openings of the int... |
[0.062255859375, -0.005706787109375, -0.009765625, 0.035400390625, -0.0125732421875, ...] |
- Loss:
MSELoss
gooaq
- Dataset: gooaq at b089f72
- Size: 3,000 evaluation samples
- Columns:
text
and label
- Approximate statistics based on the first 1000 samples:
|
text |
label |
type |
string |
list |
details |
- min: 10 tokens
- mean: 43.88 tokens
- max: 117 tokens
|
|
- Samples:
text |
label |
Instruct: Given a web search query, retrieve relevant passages that answer the query Query:what essential oils are soothing? |
[-0.025146484375, 0.06591796875, -0.0025634765625, 0.0732421875, -0.046630859375, ...] |
Titles of books should be underlined or put in italics . (Titles of stories, essays and poems are in "quotation marks.") Refer to the text specifically as a novel, story, essay, memoir, or poem, depending on what it is. |
[-0.006988525390625, -0.050537109375, -0.007476806640625, -0.07177734375, -0.049560546875, ...] |
Dakine Cyclone Wet/Dry 32L Backpack. Born from the legacy of our most iconic surf pack, the Cyclone Collection is a family of super-technical and durable wet/dry packs and bags. |
[0.0016632080078125, 0.04150390625, -0.01324462890625, 0.0234375, 0.03173828125, ...] |
- Loss:
MSELoss
wikipedia
- Dataset: wikipedia at 4a0972d
- Size: 3,000 evaluation samples
- Columns:
text
and label
- Approximate statistics based on the first 1000 samples:
|
text |
label |
type |
string |
list |
details |
- min: 5 tokens
- mean: 28.1 tokens
- max: 105 tokens
|
|
- Samples:
text |
label |
The daughter of Vice-admiral George Davies and Julia Hume, she spent her younger years on board the ship he was stationed, the Griper. |
[0.0361328125, 0.01904296875, -0.003662109375, 0.0247802734375, 0.0140380859375, ...] |
The impetus for the project began when Amalgamated Dynamics, hired to provide the practical effects for The Thing, a prequel to John Carpenter's 1982 classic film-renowned for its almost exclusive use of practical effects-became disillusioned upon discovering the theatrical release had the bulk of their effects digitally replaced with computer-generated imagery. |
[-0.0106201171875, -0.0439453125, -0.01104736328125, 0.00946044921875, 0.0322265625, ...] |
Lost Angeles, his second feature film, starring Joelle Carter and Kelly Blatz, had its world premiere at the Oldenburg International Film Festival in 2012. |
[0.0272216796875, 0.0263671875, -0.007110595703125, 0.0294189453125, 0.01129150390625, ...] |
- Loss:
MSELoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: steps
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 32
learning_rate
: 0.0001
num_train_epochs
: 1
warmup_ratio
: 0.1
bf16
: True
load_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: steps
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 32
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
torch_empty_cache_steps
: None
learning_rate
: 0.0001
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 1
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
tp_size
: 0
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: None
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
include_for_metrics
: []
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
use_liger_kernel
: False
eval_use_gather_object
: False
average_tokens_across_devices
: False
prompts
: None
batch_sampler
: batch_sampler
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
nq loss |
gooaq loss |
wikipedia loss |
NanoMSMARCO_cosine_ndcg@10 |
NanoNFCorpus_cosine_ndcg@10 |
NanoNQ_cosine_ndcg@10 |
NanoBEIR_mean_cosine_ndcg@10 |
negative_mse |
-1 |
-1 |
- |
- |
- |
- |
0.0 |
0.0111 |
0.0 |
0.0037 |
-0.1948 |
0.0162 |
100 |
0.0018 |
- |
- |
- |
- |
- |
- |
- |
- |
0.0324 |
200 |
0.0013 |
- |
- |
- |
- |
- |
- |
- |
- |
0.0486 |
300 |
0.0012 |
- |
- |
- |
- |
- |
- |
- |
- |
0.0648 |
400 |
0.0012 |
- |
- |
- |
- |
- |
- |
- |
- |
0.0810 |
500 |
0.0011 |
0.0010 |
0.0012 |
0.0011 |
0.0 |
0.0250 |
0.0791 |
0.0347 |
-0.1091 |
0.0972 |
600 |
0.001 |
- |
- |
- |
- |
- |
- |
- |
- |
0.1134 |
700 |
0.0009 |
- |
- |
- |
- |
- |
- |
- |
- |
0.1296 |
800 |
0.0008 |
- |
- |
- |
- |
- |
- |
- |
- |
0.1458 |
900 |
0.0007 |
- |
- |
- |
- |
- |
- |
- |
- |
0.1620 |
1000 |
0.0006 |
0.0006 |
0.0008 |
0.0008 |
0.3983 |
0.1100 |
0.3080 |
0.2721 |
-0.0706 |
0.1783 |
1100 |
0.0006 |
- |
- |
- |
- |
- |
- |
- |
- |
0.1945 |
1200 |
0.0005 |
- |
- |
- |
- |
- |
- |
- |
- |
0.2107 |
1300 |
0.0005 |
- |
- |
- |
- |
- |
- |
- |
- |
0.2269 |
1400 |
0.0005 |
- |
- |
- |
- |
- |
- |
- |
- |
0.2431 |
1500 |
0.0005 |
0.0005 |
0.0007 |
0.0006 |
0.4665 |
0.1554 |
0.3481 |
0.3233 |
-0.0593 |
0.2593 |
1600 |
0.0005 |
- |
- |
- |
- |
- |
- |
- |
- |
0.2755 |
1700 |
0.0005 |
- |
- |
- |
- |
- |
- |
- |
- |
0.2917 |
1800 |
0.0005 |
- |
- |
- |
- |
- |
- |
- |
- |
0.3079 |
1900 |
0.0004 |
- |
- |
- |
- |
- |
- |
- |
- |
0.3241 |
2000 |
0.0004 |
0.0004 |
0.0006 |
0.0006 |
0.4292 |
0.1827 |
0.4041 |
0.3387 |
-0.0541 |
0.3403 |
2100 |
0.0004 |
- |
- |
- |
- |
- |
- |
- |
- |
0.3565 |
2200 |
0.0004 |
- |
- |
- |
- |
- |
- |
- |
- |
0.3727 |
2300 |
0.0004 |
- |
- |
- |
- |
- |
- |
- |
- |
0.3889 |
2400 |
0.0004 |
- |
- |
- |
- |
- |
- |
- |
- |
0.4051 |
2500 |
0.0004 |
0.0004 |
0.0006 |
0.0006 |
0.4780 |
0.1915 |
0.4106 |
0.3600 |
-0.0515 |
0.4213 |
2600 |
0.0004 |
- |
- |
- |
- |
- |
- |
- |
- |
0.4375 |
2700 |
0.0004 |
- |
- |
- |
- |
- |
- |
- |
- |
0.4537 |
2800 |
0.0004 |
- |
- |
- |
- |
- |
- |
- |
- |
0.4699 |
2900 |
0.0004 |
- |
- |
- |
- |
- |
- |
- |
- |
0.4861 |
3000 |
0.0004 |
0.0004 |
0.0006 |
0.0005 |
0.4937 |
0.1937 |
0.4117 |
0.3664 |
-0.0498 |
0.5023 |
3100 |
0.0004 |
- |
- |
- |
- |
- |
- |
- |
- |
0.5186 |
3200 |
0.0004 |
- |
- |
- |
- |
- |
- |
- |
- |
0.5348 |
3300 |
0.0004 |
- |
- |
- |
- |
- |
- |
- |
- |
0.5510 |
3400 |
0.0004 |
- |
- |
- |
- |
- |
- |
- |
- |
0.5672 |
3500 |
0.0004 |
0.0004 |
0.0005 |
0.0005 |
0.4939 |
0.1955 |
0.4533 |
0.3809 |
-0.0489 |
0.5834 |
3600 |
0.0004 |
- |
- |
- |
- |
- |
- |
- |
- |
0.5996 |
3700 |
0.0004 |
- |
- |
- |
- |
- |
- |
- |
- |
0.6158 |
3800 |
0.0004 |
- |
- |
- |
- |
- |
- |
- |
- |
0.6320 |
3900 |
0.0004 |
- |
- |
- |
- |
- |
- |
- |
- |
0.6482 |
4000 |
0.0004 |
0.0004 |
0.0005 |
0.0005 |
0.4948 |
0.2011 |
0.4373 |
0.3777 |
-0.0482 |
0.6644 |
4100 |
0.0004 |
- |
- |
- |
- |
- |
- |
- |
- |
0.6806 |
4200 |
0.0004 |
- |
- |
- |
- |
- |
- |
- |
- |
0.6968 |
4300 |
0.0004 |
- |
- |
- |
- |
- |
- |
- |
- |
0.7130 |
4400 |
0.0004 |
- |
- |
- |
- |
- |
- |
- |
- |
0.7292 |
4500 |
0.0004 |
0.0004 |
0.0005 |
0.0005 |
0.4909 |
0.2049 |
0.4515 |
0.3824 |
-0.0477 |
0.7454 |
4600 |
0.0004 |
- |
- |
- |
- |
- |
- |
- |
- |
0.7616 |
4700 |
0.0004 |
- |
- |
- |
- |
- |
- |
- |
- |
0.7778 |
4800 |
0.0004 |
- |
- |
- |
- |
- |
- |
- |
- |
0.7940 |
4900 |
0.0004 |
- |
- |
- |
- |
- |
- |
- |
- |
0.8102 |
5000 |
0.0004 |
0.0004 |
0.0005 |
0.0005 |
0.4875 |
0.2022 |
0.4448 |
0.3782 |
-0.0475 |
0.8264 |
5100 |
0.0004 |
- |
- |
- |
- |
- |
- |
- |
- |
0.8427 |
5200 |
0.0004 |
- |
- |
- |
- |
- |
- |
- |
- |
0.8589 |
5300 |
0.0004 |
- |
- |
- |
- |
- |
- |
- |
- |
0.8751 |
5400 |
0.0004 |
- |
- |
- |
- |
- |
- |
- |
- |
0.8913 |
5500 |
0.0004 |
0.0004 |
0.0005 |
0.0005 |
0.4943 |
0.2043 |
0.4519 |
0.3835 |
-0.0474 |
0.9075 |
5600 |
0.0004 |
- |
- |
- |
- |
- |
- |
- |
- |
0.9237 |
5700 |
0.0004 |
- |
- |
- |
- |
- |
- |
- |
- |
0.9399 |
5800 |
0.0004 |
- |
- |
- |
- |
- |
- |
- |
- |
0.9561 |
5900 |
0.0004 |
- |
- |
- |
- |
- |
- |
- |
- |
0.9723 |
6000 |
0.0004 |
0.0004 |
0.0005 |
0.0005 |
0.4971 |
0.205 |
0.4494 |
0.3838 |
-0.0473 |
0.9885 |
6100 |
0.0004 |
- |
- |
- |
- |
- |
- |
- |
- |
-1 |
-1 |
- |
- |
- |
- |
0.4971 |
0.2050 |
0.4494 |
0.3838 |
-0.0473 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.10
- Sentence Transformers: 4.2.0.dev0
- Transformers: 4.51.2
- PyTorch: 2.5.1+cu124
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MSELoss
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}