SentenceTransformer based on nreimers/TinyBERT_L-4_H-312_v2
This is a sentence-transformers model finetuned from nreimers/TinyBERT_L-4_H-312_v2. It maps sentences & paragraphs to a 312-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nreimers/TinyBERT_L-4_H-312_v2
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 312 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/TinyBERT_L-4_H-312_v2-distilled-from-stsb-roberta-base-v2-new")
# Run inference
sentences = [
'A black dog is drinking next to a brown and white dog that is looking at an orange ball in the lake, whilst a horse and rider passes behind.',
'There are two people running around a track in lane three and the one wearing a blue shirt with a green thing over the eyes is just barely ahead of the guy wearing an orange shirt and sunglasses.',
'the guy is dead',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 312]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
sts-dev
andsts-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | sts-dev | sts-test |
---|---|---|
pearson_cosine | 0.802 | 0.7494 |
spearman_cosine | 0.8162 | 0.7525 |
Knowledge Distillation
- Evaluated with
MSEEvaluator
Metric | Value |
---|---|
negative_mse | -50.3995 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 200,000 training samples
- Columns:
sentence
andlabel
- Approximate statistics based on the first 1000 samples:
sentence label type string list details - min: 4 tokens
- mean: 12.24 tokens
- max: 52 tokens
- size: 312 elements
- Samples:
sentence label A person on a horse jumps over a broken down airplane.
[-0.05779948830604553, 0.7306336760520935, -2.7011518478393555, 1.7303822040557861, 1.379652500152588, ...]
Children smiling and waving at camera
[-2.939552068710327, 2.887307643890381, 7.378897666931152, 5.352669715881348, -2.55843448638916, ...]
A boy is jumping on skateboard in the middle of a red bridge.
[2.7139971256256104, 3.2107176780700684, 1.0811409950256348, 6.389298439025879, -0.5123305320739746, ...]
- Loss:
MSELoss
Evaluation Dataset
Unnamed Dataset
- Size: 10,000 evaluation samples
- Columns:
sentence
andlabel
- Approximate statistics based on the first 1000 samples:
sentence label type string list details - min: 5 tokens
- mean: 13.23 tokens
- max: 57 tokens
- size: 312 elements
- Samples:
sentence label Two women are embracing while holding to go packages.
[-5.986438751220703, -2.4999303817749023, 2.2099857330322266, -2.048459529876709, 1.1695001125335693, ...]
Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.
[-1.8326359987258911, 0.5514901876449585, 2.561642646789551, 3.8372995853424072, -3.0104174613952637, ...]
A man selling donuts to a customer during a world exhibition event held in the city of Angeles
[3.0850987434387207, 3.353701591491699, -0.2763029932975769, -2.3397164344787598, 3.109376907348633, ...]
- Loss:
MSELoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64learning_rate
: 0.0001num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 0.0001weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | negative_mse | sts-test_spearman_cosine |
---|---|---|---|---|---|---|
0.032 | 100 | 0.885 | - | - | - | - |
0.064 | 200 | 0.7985 | - | - | - | - |
0.096 | 300 | 0.6881 | - | - | - | - |
0.128 | 400 | 0.6088 | - | - | - | - |
0.16 | 500 | 0.5608 | 0.6318 | 0.7526 | -63.1827 | - |
0.192 | 600 | 0.5278 | - | - | - | - |
0.224 | 700 | 0.5031 | - | - | - | - |
0.256 | 800 | 0.4854 | - | - | - | - |
0.288 | 900 | 0.4659 | - | - | - | - |
0.32 | 1000 | 0.4514 | 0.5661 | 0.7928 | -56.6129 | - |
0.352 | 1100 | 0.4373 | - | - | - | - |
0.384 | 1200 | 0.427 | - | - | - | - |
0.416 | 1300 | 0.4181 | - | - | - | - |
0.448 | 1400 | 0.41 | - | - | - | - |
0.48 | 1500 | 0.4053 | 0.5370 | 0.8043 | -53.6980 | - |
0.512 | 1600 | 0.3934 | - | - | - | - |
0.544 | 1700 | 0.3905 | - | - | - | - |
0.576 | 1800 | 0.3848 | - | - | - | - |
0.608 | 1900 | 0.3787 | - | - | - | - |
0.64 | 2000 | 0.3734 | 0.5192 | 0.8099 | -51.9208 | - |
0.672 | 2100 | 0.3715 | - | - | - | - |
0.704 | 2200 | 0.3694 | - | - | - | - |
0.736 | 2300 | 0.3665 | - | - | - | - |
0.768 | 2400 | 0.3615 | - | - | - | - |
0.8 | 2500 | 0.3576 | 0.5101 | 0.8147 | -51.0102 | - |
0.832 | 2600 | 0.3547 | - | - | - | - |
0.864 | 2700 | 0.3542 | - | - | - | - |
0.896 | 2800 | 0.3521 | - | - | - | - |
0.928 | 2900 | 0.352 | - | - | - | - |
0.96 | 3000 | 0.3525 | 0.504 | 0.8162 | -50.3995 | - |
0.992 | 3100 | 0.3491 | - | - | - | - |
-1 | -1 | - | - | - | - | 0.7525 |
- The bold row denotes the saved checkpoint.
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.009 kWh
- Carbon Emitted: 0.003 kg of CO2
- Hours Used: 0.053 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.5.0.dev0
- Transformers: 4.49.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.1
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MSELoss
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for tomaarsen/TinyBERT_L-4_H-312_v2-distilled-from-stsb-roberta-base-v2-new
Base model
nreimers/TinyBERT_L-4_H-312_v2Evaluation results
- Pearson Cosine on sts devself-reported0.802
- Spearman Cosine on sts devself-reported0.816
- Negative Mse on Unknownself-reported-50.400
- Pearson Cosine on sts testself-reported0.749
- Spearman Cosine on sts testself-reported0.752