tomaarsen HF staff commited on
Commit
76ed1d8
·
verified ·
1 Parent(s): 76acca9

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 312,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,501 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:200000
8
+ - loss:MSELoss
9
+ base_model: nreimers/TinyBERT_L-4_H-312_v2
10
+ widget:
11
+ - source_sentence: At an outdoor event in an Asian-themed area, a crowd congregates
12
+ as one person in a yellow Chinese dragon costume confronts the camera.
13
+ sentences:
14
+ - Boy dressed in blue holds a toy.
15
+ - the animal is running
16
+ - Two young asian men are squatting.
17
+ - source_sentence: A man with a shopping cart is studying the shelves in a supermarket
18
+ aisle.
19
+ sentences:
20
+ - The children are watching TV at home.
21
+ - Three young boys one is holding a camera and another is holding a green toy all
22
+ are wearing t-shirt and smiling.
23
+ - A large group of people are gathered outside of a brick building lit with spotlights.
24
+ - source_sentence: The door is open.
25
+ sentences:
26
+ - There are three men in this picture, two are on motorbikes, one of the men has
27
+ a large piece of furniture on the back of his bike, the other is about to be handed
28
+ a piece of paper by a man in a white shirt.
29
+ - People are playing music.
30
+ - A girl is using an apple laptop with her headphones in her ears.
31
+ - source_sentence: A small group of children are standing in a classroom and one of
32
+ them has a foot in a trashcan, which also has a rope leading out of it.
33
+ sentences:
34
+ - Children are swimming at the beach.
35
+ - Women are celebrating at a bar.
36
+ - Some men with jerseys are in a bar, watching a soccer match.
37
+ - source_sentence: A black dog is drinking next to a brown and white dog that is looking
38
+ at an orange ball in the lake, whilst a horse and rider passes behind.
39
+ sentences:
40
+ - There are two people running around a track in lane three and the one wearing
41
+ a blue shirt with a green thing over the eyes is just barely ahead of the guy
42
+ wearing an orange shirt and sunglasses.
43
+ - A girl is sitting
44
+ - the guy is dead
45
+ pipeline_tag: sentence-similarity
46
+ library_name: sentence-transformers
47
+ metrics:
48
+ - pearson_cosine
49
+ - spearman_cosine
50
+ - negative_mse
51
+ co2_eq_emissions:
52
+ emissions: 3.4513310599379015
53
+ energy_consumed: 0.008879118347571923
54
+ source: codecarbon
55
+ training_type: fine-tuning
56
+ on_cloud: false
57
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
58
+ ram_total_size: 31.777088165283203
59
+ hours_used: 0.053
60
+ hardware_used: 1 x NVIDIA GeForce RTX 3090
61
+ model-index:
62
+ - name: SentenceTransformer based on nreimers/TinyBERT_L-4_H-312_v2
63
+ results:
64
+ - task:
65
+ type: semantic-similarity
66
+ name: Semantic Similarity
67
+ dataset:
68
+ name: sts dev
69
+ type: sts-dev
70
+ metrics:
71
+ - type: pearson_cosine
72
+ value: 0.8020427163636963
73
+ name: Pearson Cosine
74
+ - type: spearman_cosine
75
+ value: 0.8162119531251948
76
+ name: Spearman Cosine
77
+ - task:
78
+ type: knowledge-distillation
79
+ name: Knowledge Distillation
80
+ dataset:
81
+ name: Unknown
82
+ type: unknown
83
+ metrics:
84
+ - type: negative_mse
85
+ value: -50.39951801300049
86
+ name: Negative Mse
87
+ - task:
88
+ type: semantic-similarity
89
+ name: Semantic Similarity
90
+ dataset:
91
+ name: sts test
92
+ type: sts-test
93
+ metrics:
94
+ - type: pearson_cosine
95
+ value: 0.7493791518293895
96
+ name: Pearson Cosine
97
+ - type: spearman_cosine
98
+ value: 0.752488836028113
99
+ name: Spearman Cosine
100
+ ---
101
+
102
+ # SentenceTransformer based on nreimers/TinyBERT_L-4_H-312_v2
103
+
104
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nreimers/TinyBERT_L-4_H-312_v2](https://huggingface.co/nreimers/TinyBERT_L-4_H-312_v2). It maps sentences & paragraphs to a 312-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
105
+
106
+ ## Model Details
107
+
108
+ ### Model Description
109
+ - **Model Type:** Sentence Transformer
110
+ - **Base model:** [nreimers/TinyBERT_L-4_H-312_v2](https://huggingface.co/nreimers/TinyBERT_L-4_H-312_v2) <!-- at revision d782507ee95c6565fe5924fcd6090999055e8db6 -->
111
+ - **Maximum Sequence Length:** 512 tokens
112
+ - **Output Dimensionality:** 312 dimensions
113
+ - **Similarity Function:** Cosine Similarity
114
+ <!-- - **Training Dataset:** Unknown -->
115
+ <!-- - **Language:** Unknown -->
116
+ <!-- - **License:** Unknown -->
117
+
118
+ ### Model Sources
119
+
120
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
121
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
122
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
123
+
124
+ ### Full Model Architecture
125
+
126
+ ```
127
+ SentenceTransformer(
128
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
129
+ (1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
130
+ )
131
+ ```
132
+
133
+ ## Usage
134
+
135
+ ### Direct Usage (Sentence Transformers)
136
+
137
+ First install the Sentence Transformers library:
138
+
139
+ ```bash
140
+ pip install -U sentence-transformers
141
+ ```
142
+
143
+ Then you can load this model and run inference.
144
+ ```python
145
+ from sentence_transformers import SentenceTransformer
146
+
147
+ # Download from the 🤗 Hub
148
+ model = SentenceTransformer("tomaarsen/TinyBERT_L-4_H-312_v2-distilled-from-stsb-roberta-base-v2-new")
149
+ # Run inference
150
+ sentences = [
151
+ 'A black dog is drinking next to a brown and white dog that is looking at an orange ball in the lake, whilst a horse and rider passes behind.',
152
+ 'There are two people running around a track in lane three and the one wearing a blue shirt with a green thing over the eyes is just barely ahead of the guy wearing an orange shirt and sunglasses.',
153
+ 'the guy is dead',
154
+ ]
155
+ embeddings = model.encode(sentences)
156
+ print(embeddings.shape)
157
+ # [3, 312]
158
+
159
+ # Get the similarity scores for the embeddings
160
+ similarities = model.similarity(embeddings, embeddings)
161
+ print(similarities.shape)
162
+ # [3, 3]
163
+ ```
164
+
165
+ <!--
166
+ ### Direct Usage (Transformers)
167
+
168
+ <details><summary>Click to see the direct usage in Transformers</summary>
169
+
170
+ </details>
171
+ -->
172
+
173
+ <!--
174
+ ### Downstream Usage (Sentence Transformers)
175
+
176
+ You can finetune this model on your own dataset.
177
+
178
+ <details><summary>Click to expand</summary>
179
+
180
+ </details>
181
+ -->
182
+
183
+ <!--
184
+ ### Out-of-Scope Use
185
+
186
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
187
+ -->
188
+
189
+ ## Evaluation
190
+
191
+ ### Metrics
192
+
193
+ #### Semantic Similarity
194
+
195
+ * Datasets: `sts-dev` and `sts-test`
196
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
197
+
198
+ | Metric | sts-dev | sts-test |
199
+ |:--------------------|:-----------|:-----------|
200
+ | pearson_cosine | 0.802 | 0.7494 |
201
+ | **spearman_cosine** | **0.8162** | **0.7525** |
202
+
203
+ #### Knowledge Distillation
204
+
205
+ * Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
206
+
207
+ | Metric | Value |
208
+ |:-----------------|:-------------|
209
+ | **negative_mse** | **-50.3995** |
210
+
211
+ <!--
212
+ ## Bias, Risks and Limitations
213
+
214
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
215
+ -->
216
+
217
+ <!--
218
+ ### Recommendations
219
+
220
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
221
+ -->
222
+
223
+ ## Training Details
224
+
225
+ ### Training Dataset
226
+
227
+ #### Unnamed Dataset
228
+
229
+ * Size: 200,000 training samples
230
+ * Columns: <code>sentence</code> and <code>label</code>
231
+ * Approximate statistics based on the first 1000 samples:
232
+ | | sentence | label |
233
+ |:--------|:----------------------------------------------------------------------------------|:-------------------------------------|
234
+ | type | string | list |
235
+ | details | <ul><li>min: 4 tokens</li><li>mean: 12.24 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>size: 312 elements</li></ul> |
236
+ * Samples:
237
+ | sentence | label |
238
+ |:---------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------|
239
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>[-0.05779948830604553, 0.7306336760520935, -2.7011518478393555, 1.7303822040557861, 1.379652500152588, ...]</code> |
240
+ | <code>Children smiling and waving at camera</code> | <code>[-2.939552068710327, 2.887307643890381, 7.378897666931152, 5.352669715881348, -2.55843448638916, ...]</code> |
241
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>[2.7139971256256104, 3.2107176780700684, 1.0811409950256348, 6.389298439025879, -0.5123305320739746, ...]</code> |
242
+ * Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
243
+
244
+ ### Evaluation Dataset
245
+
246
+ #### Unnamed Dataset
247
+
248
+ * Size: 10,000 evaluation samples
249
+ * Columns: <code>sentence</code> and <code>label</code>
250
+ * Approximate statistics based on the first 1000 samples:
251
+ | | sentence | label |
252
+ |:--------|:----------------------------------------------------------------------------------|:-------------------------------------|
253
+ | type | string | list |
254
+ | details | <ul><li>min: 5 tokens</li><li>mean: 13.23 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>size: 312 elements</li></ul> |
255
+ * Samples:
256
+ | sentence | label |
257
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------|
258
+ | <code>Two women are embracing while holding to go packages.</code> | <code>[-5.986438751220703, -2.4999303817749023, 2.2099857330322266, -2.048459529876709, 1.1695001125335693, ...]</code> |
259
+ | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>[-1.8326359987258911, 0.5514901876449585, 2.561642646789551, 3.8372995853424072, -3.0104174613952637, ...]</code> |
260
+ | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>[3.0850987434387207, 3.353701591491699, -0.2763029932975769, -2.3397164344787598, 3.109376907348633, ...]</code> |
261
+ * Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
262
+
263
+ ### Training Hyperparameters
264
+ #### Non-Default Hyperparameters
265
+
266
+ - `eval_strategy`: steps
267
+ - `per_device_train_batch_size`: 64
268
+ - `per_device_eval_batch_size`: 64
269
+ - `learning_rate`: 0.0001
270
+ - `num_train_epochs`: 1
271
+ - `warmup_ratio`: 0.1
272
+ - `fp16`: True
273
+ - `load_best_model_at_end`: True
274
+
275
+ #### All Hyperparameters
276
+ <details><summary>Click to expand</summary>
277
+
278
+ - `overwrite_output_dir`: False
279
+ - `do_predict`: False
280
+ - `eval_strategy`: steps
281
+ - `prediction_loss_only`: True
282
+ - `per_device_train_batch_size`: 64
283
+ - `per_device_eval_batch_size`: 64
284
+ - `per_gpu_train_batch_size`: None
285
+ - `per_gpu_eval_batch_size`: None
286
+ - `gradient_accumulation_steps`: 1
287
+ - `eval_accumulation_steps`: None
288
+ - `torch_empty_cache_steps`: None
289
+ - `learning_rate`: 0.0001
290
+ - `weight_decay`: 0.0
291
+ - `adam_beta1`: 0.9
292
+ - `adam_beta2`: 0.999
293
+ - `adam_epsilon`: 1e-08
294
+ - `max_grad_norm`: 1.0
295
+ - `num_train_epochs`: 1
296
+ - `max_steps`: -1
297
+ - `lr_scheduler_type`: linear
298
+ - `lr_scheduler_kwargs`: {}
299
+ - `warmup_ratio`: 0.1
300
+ - `warmup_steps`: 0
301
+ - `log_level`: passive
302
+ - `log_level_replica`: warning
303
+ - `log_on_each_node`: True
304
+ - `logging_nan_inf_filter`: True
305
+ - `save_safetensors`: True
306
+ - `save_on_each_node`: False
307
+ - `save_only_model`: False
308
+ - `restore_callback_states_from_checkpoint`: False
309
+ - `no_cuda`: False
310
+ - `use_cpu`: False
311
+ - `use_mps_device`: False
312
+ - `seed`: 42
313
+ - `data_seed`: None
314
+ - `jit_mode_eval`: False
315
+ - `use_ipex`: False
316
+ - `bf16`: False
317
+ - `fp16`: True
318
+ - `fp16_opt_level`: O1
319
+ - `half_precision_backend`: auto
320
+ - `bf16_full_eval`: False
321
+ - `fp16_full_eval`: False
322
+ - `tf32`: None
323
+ - `local_rank`: 0
324
+ - `ddp_backend`: None
325
+ - `tpu_num_cores`: None
326
+ - `tpu_metrics_debug`: False
327
+ - `debug`: []
328
+ - `dataloader_drop_last`: False
329
+ - `dataloader_num_workers`: 0
330
+ - `dataloader_prefetch_factor`: None
331
+ - `past_index`: -1
332
+ - `disable_tqdm`: False
333
+ - `remove_unused_columns`: True
334
+ - `label_names`: None
335
+ - `load_best_model_at_end`: True
336
+ - `ignore_data_skip`: False
337
+ - `fsdp`: []
338
+ - `fsdp_min_num_params`: 0
339
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
340
+ - `fsdp_transformer_layer_cls_to_wrap`: None
341
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
342
+ - `deepspeed`: None
343
+ - `label_smoothing_factor`: 0.0
344
+ - `optim`: adamw_torch
345
+ - `optim_args`: None
346
+ - `adafactor`: False
347
+ - `group_by_length`: False
348
+ - `length_column_name`: length
349
+ - `ddp_find_unused_parameters`: None
350
+ - `ddp_bucket_cap_mb`: None
351
+ - `ddp_broadcast_buffers`: False
352
+ - `dataloader_pin_memory`: True
353
+ - `dataloader_persistent_workers`: False
354
+ - `skip_memory_metrics`: True
355
+ - `use_legacy_prediction_loop`: False
356
+ - `push_to_hub`: False
357
+ - `resume_from_checkpoint`: None
358
+ - `hub_model_id`: None
359
+ - `hub_strategy`: every_save
360
+ - `hub_private_repo`: None
361
+ - `hub_always_push`: False
362
+ - `gradient_checkpointing`: False
363
+ - `gradient_checkpointing_kwargs`: None
364
+ - `include_inputs_for_metrics`: False
365
+ - `include_for_metrics`: []
366
+ - `eval_do_concat_batches`: True
367
+ - `fp16_backend`: auto
368
+ - `push_to_hub_model_id`: None
369
+ - `push_to_hub_organization`: None
370
+ - `mp_parameters`:
371
+ - `auto_find_batch_size`: False
372
+ - `full_determinism`: False
373
+ - `torchdynamo`: None
374
+ - `ray_scope`: last
375
+ - `ddp_timeout`: 1800
376
+ - `torch_compile`: False
377
+ - `torch_compile_backend`: None
378
+ - `torch_compile_mode`: None
379
+ - `dispatch_batches`: None
380
+ - `split_batches`: None
381
+ - `include_tokens_per_second`: False
382
+ - `include_num_input_tokens_seen`: False
383
+ - `neftune_noise_alpha`: None
384
+ - `optim_target_modules`: None
385
+ - `batch_eval_metrics`: False
386
+ - `eval_on_start`: False
387
+ - `use_liger_kernel`: False
388
+ - `eval_use_gather_object`: False
389
+ - `average_tokens_across_devices`: False
390
+ - `prompts`: None
391
+ - `batch_sampler`: batch_sampler
392
+ - `multi_dataset_batch_sampler`: proportional
393
+
394
+ </details>
395
+
396
+ ### Training Logs
397
+ | Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | negative_mse | sts-test_spearman_cosine |
398
+ |:--------:|:--------:|:-------------:|:---------------:|:-----------------------:|:------------:|:------------------------:|
399
+ | 0.032 | 100 | 0.885 | - | - | - | - |
400
+ | 0.064 | 200 | 0.7985 | - | - | - | - |
401
+ | 0.096 | 300 | 0.6881 | - | - | - | - |
402
+ | 0.128 | 400 | 0.6088 | - | - | - | - |
403
+ | 0.16 | 500 | 0.5608 | 0.6318 | 0.7526 | -63.1827 | - |
404
+ | 0.192 | 600 | 0.5278 | - | - | - | - |
405
+ | 0.224 | 700 | 0.5031 | - | - | - | - |
406
+ | 0.256 | 800 | 0.4854 | - | - | - | - |
407
+ | 0.288 | 900 | 0.4659 | - | - | - | - |
408
+ | 0.32 | 1000 | 0.4514 | 0.5661 | 0.7928 | -56.6129 | - |
409
+ | 0.352 | 1100 | 0.4373 | - | - | - | - |
410
+ | 0.384 | 1200 | 0.427 | - | - | - | - |
411
+ | 0.416 | 1300 | 0.4181 | - | - | - | - |
412
+ | 0.448 | 1400 | 0.41 | - | - | - | - |
413
+ | 0.48 | 1500 | 0.4053 | 0.5370 | 0.8043 | -53.6980 | - |
414
+ | 0.512 | 1600 | 0.3934 | - | - | - | - |
415
+ | 0.544 | 1700 | 0.3905 | - | - | - | - |
416
+ | 0.576 | 1800 | 0.3848 | - | - | - | - |
417
+ | 0.608 | 1900 | 0.3787 | - | - | - | - |
418
+ | 0.64 | 2000 | 0.3734 | 0.5192 | 0.8099 | -51.9208 | - |
419
+ | 0.672 | 2100 | 0.3715 | - | - | - | - |
420
+ | 0.704 | 2200 | 0.3694 | - | - | - | - |
421
+ | 0.736 | 2300 | 0.3665 | - | - | - | - |
422
+ | 0.768 | 2400 | 0.3615 | - | - | - | - |
423
+ | 0.8 | 2500 | 0.3576 | 0.5101 | 0.8147 | -51.0102 | - |
424
+ | 0.832 | 2600 | 0.3547 | - | - | - | - |
425
+ | 0.864 | 2700 | 0.3542 | - | - | - | - |
426
+ | 0.896 | 2800 | 0.3521 | - | - | - | - |
427
+ | 0.928 | 2900 | 0.352 | - | - | - | - |
428
+ | **0.96** | **3000** | **0.3525** | **0.504** | **0.8162** | **-50.3995** | **-** |
429
+ | 0.992 | 3100 | 0.3491 | - | - | - | - |
430
+ | -1 | -1 | - | - | - | - | 0.7525 |
431
+
432
+ * The bold row denotes the saved checkpoint.
433
+
434
+ ### Environmental Impact
435
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
436
+ - **Energy Consumed**: 0.009 kWh
437
+ - **Carbon Emitted**: 0.003 kg of CO2
438
+ - **Hours Used**: 0.053 hours
439
+
440
+ ### Training Hardware
441
+ - **On Cloud**: No
442
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
443
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
444
+ - **RAM Size**: 31.78 GB
445
+
446
+ ### Framework Versions
447
+ - Python: 3.11.6
448
+ - Sentence Transformers: 3.5.0.dev0
449
+ - Transformers: 4.49.0
450
+ - PyTorch: 2.6.0+cu124
451
+ - Accelerate: 1.5.1
452
+ - Datasets: 3.3.2
453
+ - Tokenizers: 0.21.0
454
+
455
+ ## Citation
456
+
457
+ ### BibTeX
458
+
459
+ #### Sentence Transformers
460
+ ```bibtex
461
+ @inproceedings{reimers-2019-sentence-bert,
462
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
463
+ author = "Reimers, Nils and Gurevych, Iryna",
464
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
465
+ month = "11",
466
+ year = "2019",
467
+ publisher = "Association for Computational Linguistics",
468
+ url = "https://arxiv.org/abs/1908.10084",
469
+ }
470
+ ```
471
+
472
+ #### MSELoss
473
+ ```bibtex
474
+ @inproceedings{reimers-2020-multilingual-sentence-bert,
475
+ title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
476
+ author = "Reimers, Nils and Gurevych, Iryna",
477
+ booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
478
+ month = "11",
479
+ year = "2020",
480
+ publisher = "Association for Computational Linguistics",
481
+ url = "https://arxiv.org/abs/2004.09813",
482
+ }
483
+ ```
484
+
485
+ <!--
486
+ ## Glossary
487
+
488
+ *Clearly define terms in order to be accessible across audiences.*
489
+ -->
490
+
491
+ <!--
492
+ ## Model Card Authors
493
+
494
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
495
+ -->
496
+
497
+ <!--
498
+ ## Model Card Contact
499
+
500
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
501
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "output/model-distillation-2025-03-21_12-55-56/final",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 312,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1200,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 4,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.49.0",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.5.0.dev0",
4
+ "transformers": "4.49.0",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:167725f9c083a0a0765eaa73d04e8f3ded884be89672fcbbe5482db9c1d1ea33
3
+ size 57408776
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 512,
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff