tomaarsen's picture
tomaarsen HF Staff
Add new SparseEncoder model
4fdc8be verified
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - sparse-encoder
  - sparse
  - csr
  - generated_from_trainer
  - dataset_size:99000
  - loss:CSRLoss
  - loss:SparseMultipleNegativesRankingLoss
base_model: mixedbread-ai/mxbai-embed-large-v1
widget:
  - text: >-
      Saudi Arabia–United Arab Emirates relations However, the UAE and Saudi
      Arabia continue to take somewhat differing stances on regional conflicts
      such the Yemeni Civil War, where the UAE opposes Al-Islah, and supports
      the Southern Movement, which has fought against Saudi-backed forces, and
      the Syrian Civil War, where the UAE has disagreed with Saudi support for
      Islamist movements.[4]
  - text: >-
      Economy of New Zealand New Zealand's diverse market economy has a sizable
      service sector, accounting for 63% of all GDP activity in 2013.[17] Large
      scale manufacturing industries include aluminium production, food
      processing, metal fabrication, wood and paper products. Mining,
      manufacturing, electricity, gas, water, and waste services accounted for
      16.5% of GDP in 2013.[17] The primary sector continues to dominate New
      Zealand's exports, despite accounting for 6.5% of GDP in 2013.[17]
  - text: >-
      who was the first president of indian science congress meeting held in
      kolkata in 1914
  - text: >-
      Get Over It (Eagles song) "Get Over It" is a song by the Eagles released
      as a single after a fourteen-year breakup. It was also the first song
      written by bandmates Don Henley and Glenn Frey when the band reunited.
      "Get Over It" was played live for the first time during their Hell Freezes
      Over tour in 1994. It returned the band to the U.S. Top 40 after a
      fourteen-year absence, peaking at No. 31 on the Billboard Hot 100 chart.
      It also hit No. 4 on the Billboard Mainstream Rock Tracks chart. The song
      was not played live by the Eagles after the "Hell Freezes Over" tour in
      1994. It remains the group's last Top 40 hit in the U.S.
  - text: >-
      Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion
      who is considered by Christians to be one of the first Gentiles to convert
      to the faith, as related in Acts of the Apostles.
datasets:
  - sentence-transformers/natural-questions
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
  - query_active_dims
  - query_sparsity_ratio
  - corpus_active_dims
  - corpus_sparsity_ratio
co2_eq_emissions:
  emissions: 40.554498153266884
  energy_consumed: 0.10433313477488382
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.265
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
  - name: Sparse CSR model trained on Natural Questions
    results:
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: nq eval 4
          type: nq_eval_4
        metrics:
          - type: cosine_accuracy@1
            value: 0.305
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.442
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.501
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.61
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.305
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.14733333333333332
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1002
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.061
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.305
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.442
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.501
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.61
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.44361734950305676
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.39226865079365053
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.4023289651029423
            name: Cosine Map@100
          - type: query_active_dims
            value: 4
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9990234375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 4
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9990234375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: nq eval 8
          type: nq_eval_8
        metrics:
          - type: cosine_accuracy@1
            value: 0.509
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.696
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.758
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.831
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.509
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.232
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.15159999999999998
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.0831
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.509
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.696
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.758
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.831
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.6667307022062331
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6143956349206346
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6199605197356874
            name: Cosine Map@100
          - type: query_active_dims
            value: 8
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.998046875
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 8
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.998046875
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: nq eval 16
          type: nq_eval_16
        metrics:
          - type: cosine_accuracy@1
            value: 0.686
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.837
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.88
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.925
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.686
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.279
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.176
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09250000000000001
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.686
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.837
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.88
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.925
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8078628031678144
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7699809523809527
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7734418631171641
            name: Cosine Map@100
          - type: query_active_dims
            value: 16
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.99609375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 16
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.99609375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: nq eval 32
          type: nq_eval_32
        metrics:
          - type: cosine_accuracy@1
            value: 0.82
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.916
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.941
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.965
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.82
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.30533333333333323
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.18820000000000003
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09650000000000003
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.82
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.916
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.941
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.965
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8959815252151966
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.8735440476190476
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.8753779462223106
            name: Cosine Map@100
          - type: query_active_dims
            value: 32
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9921875
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 32
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9921875
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: nq eval 64
          type: nq_eval_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.884
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.963
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.976
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.986
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.884
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.32099999999999995
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.19520000000000004
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09860000000000002
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.884
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.963
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.976
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.986
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.9404409421950981
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.9252813492063495
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.92604431847803
            name: Cosine Map@100
          - type: query_active_dims
            value: 64
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.984375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 64
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.984375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: nq eval 128
          type: nq_eval_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.921
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.981
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.988
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.993
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.921
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.32699999999999996
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.19760000000000003
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09930000000000001
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.921
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.981
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.988
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.993
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.9613681085985268
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.950713492063492
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.9509802020874972
            name: Cosine Map@100
          - type: query_active_dims
            value: 128
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.96875
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 128
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.96875
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: nq eval 256
          type: nq_eval_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.94
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.983
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.989
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.994
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.94
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.3276666666666666
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.19780000000000003
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.0994
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.94
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.983
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.989
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.994
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.9701540897990301
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.9621623015873015
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.9622774531024532
            name: Cosine Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio

Sparse CSR model trained on Natural Questions

This is a CSR Sparse Encoder model finetuned from mixedbread-ai/mxbai-embed-large-v1 on the natural-questions dataset using the sentence-transformers library. It maps sentences & paragraphs to a 4096-dimensional sparse vector space with 256 maximum active dimensions and can be used for semantic search and sparse retrieval.

Model Details

Model Description

  • Model Type: CSR Sparse Encoder
  • Base model: mixedbread-ai/mxbai-embed-large-v1
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 4096 dimensions (trained with 256 maximum active dimensions)
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SparseEncoder(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): CSRSparsity({'input_dim': 1024, 'hidden_dim': 4096, 'k': 256, 'k_aux': 512, 'normalize': False, 'dead_threshold': 30})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/csr-mxbai-embed-large-v1-nq-cos-sim-scale-20-gamma-0.5-detach-2")
# Run inference
queries = [
    "who is cornelius in the book of acts",
]
documents = [
    'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.',
    "Joe Ranft Ranft reunited with Lasseter when he was hired by Pixar in 1991 as their head of story.[1] There he worked on all of their films produced up to 2006; this included Toy Story (for which he received an Academy Award nomination) and A Bug's Life, as the co-story writer and others as story supervisor. His final film was Cars. He also voiced characters in many of the films, including Heimlich the caterpillar in A Bug's Life, Wheezy the penguin in Toy Story 2, and Jacques the shrimp in Finding Nemo.[1]",
    'Wonderful Tonight "Wonderful Tonight" is a ballad written by Eric Clapton. It was included on Clapton\'s 1977 album Slowhand. Clapton wrote the song about Pattie Boyd.[1] The female vocal harmonies on the song are provided by Marcella Detroit (then Marcy Levy) and Yvonne Elliman.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 4096] [3, 4096]

# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[0.7220, 0.2012, 0.1931]])

Evaluation

Metrics

Sparse Information Retrieval

Metric Value
cosine_accuracy@1 0.305
cosine_accuracy@3 0.442
cosine_accuracy@5 0.501
cosine_accuracy@10 0.61
cosine_precision@1 0.305
cosine_precision@3 0.1473
cosine_precision@5 0.1002
cosine_precision@10 0.061
cosine_recall@1 0.305
cosine_recall@3 0.442
cosine_recall@5 0.501
cosine_recall@10 0.61
cosine_ndcg@10 0.4436
cosine_mrr@10 0.3923
cosine_map@100 0.4023
query_active_dims 4.0
query_sparsity_ratio 0.999
corpus_active_dims 4.0
corpus_sparsity_ratio 0.999

Sparse Information Retrieval

Metric Value
cosine_accuracy@1 0.509
cosine_accuracy@3 0.696
cosine_accuracy@5 0.758
cosine_accuracy@10 0.831
cosine_precision@1 0.509
cosine_precision@3 0.232
cosine_precision@5 0.1516
cosine_precision@10 0.0831
cosine_recall@1 0.509
cosine_recall@3 0.696
cosine_recall@5 0.758
cosine_recall@10 0.831
cosine_ndcg@10 0.6667
cosine_mrr@10 0.6144
cosine_map@100 0.62
query_active_dims 8.0
query_sparsity_ratio 0.998
corpus_active_dims 8.0
corpus_sparsity_ratio 0.998

Sparse Information Retrieval

Metric Value
cosine_accuracy@1 0.686
cosine_accuracy@3 0.837
cosine_accuracy@5 0.88
cosine_accuracy@10 0.925
cosine_precision@1 0.686
cosine_precision@3 0.279
cosine_precision@5 0.176
cosine_precision@10 0.0925
cosine_recall@1 0.686
cosine_recall@3 0.837
cosine_recall@5 0.88
cosine_recall@10 0.925
cosine_ndcg@10 0.8079
cosine_mrr@10 0.77
cosine_map@100 0.7734
query_active_dims 16.0
query_sparsity_ratio 0.9961
corpus_active_dims 16.0
corpus_sparsity_ratio 0.9961

Sparse Information Retrieval

Metric Value
cosine_accuracy@1 0.82
cosine_accuracy@3 0.916
cosine_accuracy@5 0.941
cosine_accuracy@10 0.965
cosine_precision@1 0.82
cosine_precision@3 0.3053
cosine_precision@5 0.1882
cosine_precision@10 0.0965
cosine_recall@1 0.82
cosine_recall@3 0.916
cosine_recall@5 0.941
cosine_recall@10 0.965
cosine_ndcg@10 0.896
cosine_mrr@10 0.8735
cosine_map@100 0.8754
query_active_dims 32.0
query_sparsity_ratio 0.9922
corpus_active_dims 32.0
corpus_sparsity_ratio 0.9922

Sparse Information Retrieval

Metric Value
cosine_accuracy@1 0.884
cosine_accuracy@3 0.963
cosine_accuracy@5 0.976
cosine_accuracy@10 0.986
cosine_precision@1 0.884
cosine_precision@3 0.321
cosine_precision@5 0.1952
cosine_precision@10 0.0986
cosine_recall@1 0.884
cosine_recall@3 0.963
cosine_recall@5 0.976
cosine_recall@10 0.986
cosine_ndcg@10 0.9404
cosine_mrr@10 0.9253
cosine_map@100 0.926
query_active_dims 64.0
query_sparsity_ratio 0.9844
corpus_active_dims 64.0
corpus_sparsity_ratio 0.9844

Sparse Information Retrieval

Metric Value
cosine_accuracy@1 0.921
cosine_accuracy@3 0.981
cosine_accuracy@5 0.988
cosine_accuracy@10 0.993
cosine_precision@1 0.921
cosine_precision@3 0.327
cosine_precision@5 0.1976
cosine_precision@10 0.0993
cosine_recall@1 0.921
cosine_recall@3 0.981
cosine_recall@5 0.988
cosine_recall@10 0.993
cosine_ndcg@10 0.9614
cosine_mrr@10 0.9507
cosine_map@100 0.951
query_active_dims 128.0
query_sparsity_ratio 0.9688
corpus_active_dims 128.0
corpus_sparsity_ratio 0.9688

Sparse Information Retrieval

Metric Value
cosine_accuracy@1 0.94
cosine_accuracy@3 0.983
cosine_accuracy@5 0.989
cosine_accuracy@10 0.994
cosine_precision@1 0.94
cosine_precision@3 0.3277
cosine_precision@5 0.1978
cosine_precision@10 0.0994
cosine_recall@1 0.94
cosine_recall@3 0.983
cosine_recall@5 0.989
cosine_recall@10 0.994
cosine_ndcg@10 0.9702
cosine_mrr@10 0.9622
cosine_map@100 0.9623
query_active_dims 256.0
query_sparsity_ratio 0.9375
corpus_active_dims 256.0
corpus_sparsity_ratio 0.9375

Training Details

Training Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 99,000 training samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 10 tokens
    • mean: 11.71 tokens
    • max: 26 tokens
    • min: 4 tokens
    • mean: 131.81 tokens
    • max: 450 tokens
  • Samples:
    query answer
    who played the father in papa don't preach Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.
    where was the location of the battle of hastings Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.
    how many puppies can a dog give birth to Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]
  • Loss: CSRLoss with these parameters:
    {
        "beta": 0.1,
        "gamma": 0.5,
        "loss": "SparseMultipleNegativesRankingLoss(scale=20.0, similarity_fct='cos_sim')"
    }
    

Evaluation Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 1,000 evaluation samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 10 tokens
    • mean: 11.69 tokens
    • max: 23 tokens
    • min: 15 tokens
    • mean: 134.01 tokens
    • max: 512 tokens
  • Samples:
    query answer
    where is the tiber river located in italy Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.
    what kind of car does jay gatsby drive Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.
    who sings if i can dream about you I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]
  • Loss: CSRLoss with these parameters:
    {
        "beta": 0.1,
        "gamma": 0.5,
        "loss": "SparseMultipleNegativesRankingLoss(scale=20.0, similarity_fct='cos_sim')"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • learning_rate: 4e-05
  • num_train_epochs: 1
  • bf16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 4e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss Validation Loss nq_eval_4_cosine_ndcg@10 nq_eval_8_cosine_ndcg@10 nq_eval_16_cosine_ndcg@10 nq_eval_32_cosine_ndcg@10 nq_eval_64_cosine_ndcg@10 nq_eval_128_cosine_ndcg@10 nq_eval_256_cosine_ndcg@10
-1 -1 - - 0.2777 0.4704 0.6864 0.8601 0.9349 0.9649 0.9767
0.0646 100 0.4911 - - - - - - - -
0.1293 200 0.4186 - - - - - - - -
0.1939 300 0.3902 0.3351 0.3779 0.5968 0.7846 0.8949 0.9390 0.9646 0.9688
0.2586 400 0.3749 - - - - - - - -
0.3232 500 0.3655 - - - - - - - -
0.3878 600 0.3589 0.3161 0.4119 0.6464 0.7897 0.8984 0.9380 0.9643 0.9680
0.4525 700 0.3509 - - - - - - - -
0.5171 800 0.3457 - - - - - - - -
0.5818 900 0.3431 0.3065 0.4460 0.6674 0.8094 0.8942 0.9381 0.9613 0.9691
0.6464 1000 0.3403 - - - - - - - -
0.7111 1100 0.3344 - - - - - - - -
0.7757 1200 0.3341 0.3015 0.4458 0.6664 0.8050 0.8976 0.9414 0.9586 0.9659
0.8403 1300 0.3362 - - - - - - - -
0.9050 1400 0.3303 - - - - - - - -
0.9696 1500 0.3316 0.2991 0.4417 0.6641 0.8096 0.8958 0.9399 0.9631 0.9698
-1 -1 - - 0.4436 0.6667 0.8079 0.8960 0.9404 0.9614 0.9702

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.104 kWh
  • Carbon Emitted: 0.041 kg of CO2
  • Hours Used: 0.264 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 4.2.0.dev0
  • Transformers: 4.52.4
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.5.1
  • Datasets: 2.21.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CSRLoss

@misc{wen2025matryoshkarevisitingsparsecoding,
      title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation},
      author={Tiansheng Wen and Yifei Wang and Zequn Zeng and Zhong Peng and Yudi Su and Xinyang Liu and Bo Chen and Hongwei Liu and Stefanie Jegelka and Chenyu You},
      year={2025},
      eprint={2503.01776},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2503.01776},
}

SparseMultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}