Sparse CSR model trained on Natural Questions

This is a CSR Sparse Encoder model finetuned from mixedbread-ai/mxbai-embed-large-v1 on the natural-questions dataset using the sentence-transformers library. It maps sentences & paragraphs to a 4096-dimensional sparse vector space with 256 maximum active dimensions and can be used for semantic search and sparse retrieval.

Model Details

Model Description

  • Model Type: CSR Sparse Encoder
  • Base model: mixedbread-ai/mxbai-embed-large-v1
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 4096 dimensions (trained with 256 maximum active dimensions)
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SparseEncoder(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): CSRSparsity({'input_dim': 1024, 'hidden_dim': 4096, 'k': 256, 'k_aux': 512, 'normalize': False, 'dead_threshold': 30})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/csr-mxbai-embed-large-v1-nq-cos-sim-scale-20-gamma-1")
# Run inference
queries = [
    "who is cornelius in the book of acts",
]
documents = [
    'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.',
    "Joe Ranft Ranft reunited with Lasseter when he was hired by Pixar in 1991 as their head of story.[1] There he worked on all of their films produced up to 2006; this included Toy Story (for which he received an Academy Award nomination) and A Bug's Life, as the co-story writer and others as story supervisor. His final film was Cars. He also voiced characters in many of the films, including Heimlich the caterpillar in A Bug's Life, Wheezy the penguin in Toy Story 2, and Jacques the shrimp in Finding Nemo.[1]",
    'Wonderful Tonight "Wonderful Tonight" is a ballad written by Eric Clapton. It was included on Clapton\'s 1977 album Slowhand. Clapton wrote the song about Pattie Boyd.[1] The female vocal harmonies on the song are provided by Marcella Detroit (then Marcy Levy) and Yvonne Elliman.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 4096] [3, 4096]

# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[0.7062, 0.2414, 0.2065]])

Evaluation

Metrics

Sparse Information Retrieval

Metric NanoMSMARCO_4 NanoNQ_4
cosine_accuracy@1 0.02 0.1
cosine_accuracy@3 0.12 0.16
cosine_accuracy@5 0.18 0.2
cosine_accuracy@10 0.26 0.26
cosine_precision@1 0.02 0.1
cosine_precision@3 0.04 0.0533
cosine_precision@5 0.036 0.04
cosine_precision@10 0.026 0.026
cosine_recall@1 0.02 0.1
cosine_recall@3 0.12 0.16
cosine_recall@5 0.18 0.19
cosine_recall@10 0.26 0.24
cosine_ndcg@10 0.131 0.1618
cosine_mrr@10 0.0911 0.1391
cosine_map@100 0.1006 0.1455
query_active_dims 4.0 4.0
query_sparsity_ratio 0.999 0.999
corpus_active_dims 4.0 4.0
corpus_sparsity_ratio 0.999 0.999

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean_4
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nq"
        ],
        "max_active_dims": 4
    }
    
Metric Value
cosine_accuracy@1 0.06
cosine_accuracy@3 0.14
cosine_accuracy@5 0.19
cosine_accuracy@10 0.26
cosine_precision@1 0.06
cosine_precision@3 0.0467
cosine_precision@5 0.038
cosine_precision@10 0.026
cosine_recall@1 0.06
cosine_recall@3 0.14
cosine_recall@5 0.185
cosine_recall@10 0.25
cosine_ndcg@10 0.1464
cosine_mrr@10 0.1151
cosine_map@100 0.123
query_active_dims 4.0
query_sparsity_ratio 0.999
corpus_active_dims 4.0
corpus_sparsity_ratio 0.999

Sparse Information Retrieval

Metric NanoMSMARCO_16 NanoNQ_16
cosine_accuracy@1 0.14 0.14
cosine_accuracy@3 0.32 0.32
cosine_accuracy@5 0.44 0.42
cosine_accuracy@10 0.62 0.54
cosine_precision@1 0.14 0.14
cosine_precision@3 0.1067 0.1067
cosine_precision@5 0.088 0.084
cosine_precision@10 0.062 0.054
cosine_recall@1 0.14 0.14
cosine_recall@3 0.32 0.31
cosine_recall@5 0.44 0.4
cosine_recall@10 0.62 0.51
cosine_ndcg@10 0.3523 0.3159
cosine_mrr@10 0.2692 0.2584
cosine_map@100 0.2835 0.2664
query_active_dims 16.0 16.0
query_sparsity_ratio 0.9961 0.9961
corpus_active_dims 16.0 16.0
corpus_sparsity_ratio 0.9961 0.9961

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean_16
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nq"
        ],
        "max_active_dims": 16
    }
    
Metric Value
cosine_accuracy@1 0.14
cosine_accuracy@3 0.32
cosine_accuracy@5 0.43
cosine_accuracy@10 0.58
cosine_precision@1 0.14
cosine_precision@3 0.1067
cosine_precision@5 0.086
cosine_precision@10 0.058
cosine_recall@1 0.14
cosine_recall@3 0.315
cosine_recall@5 0.42
cosine_recall@10 0.565
cosine_ndcg@10 0.3341
cosine_mrr@10 0.2638
cosine_map@100 0.2749
query_active_dims 16.0
query_sparsity_ratio 0.9961
corpus_active_dims 16.0
corpus_sparsity_ratio 0.9961

Sparse Information Retrieval

Metric NanoMSMARCO_64 NanoNQ_64
cosine_accuracy@1 0.42 0.36
cosine_accuracy@3 0.6 0.58
cosine_accuracy@5 0.74 0.74
cosine_accuracy@10 0.78 0.78
cosine_precision@1 0.42 0.36
cosine_precision@3 0.2 0.2
cosine_precision@5 0.148 0.152
cosine_precision@10 0.078 0.082
cosine_recall@1 0.42 0.34
cosine_recall@3 0.6 0.54
cosine_recall@5 0.74 0.68
cosine_recall@10 0.78 0.73
cosine_ndcg@10 0.5989 0.5402
cosine_mrr@10 0.5405 0.4945
cosine_map@100 0.5486 0.4793
query_active_dims 64.0 64.0
query_sparsity_ratio 0.9844 0.9844
corpus_active_dims 64.0 64.0
corpus_sparsity_ratio 0.9844 0.9844

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean_64
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nq"
        ],
        "max_active_dims": 64
    }
    
Metric Value
cosine_accuracy@1 0.39
cosine_accuracy@3 0.59
cosine_accuracy@5 0.74
cosine_accuracy@10 0.78
cosine_precision@1 0.39
cosine_precision@3 0.2
cosine_precision@5 0.15
cosine_precision@10 0.08
cosine_recall@1 0.38
cosine_recall@3 0.57
cosine_recall@5 0.71
cosine_recall@10 0.755
cosine_ndcg@10 0.5695
cosine_mrr@10 0.5175
cosine_map@100 0.5139
query_active_dims 64.0
query_sparsity_ratio 0.9844
corpus_active_dims 64.0
corpus_sparsity_ratio 0.9844

Sparse Information Retrieval

Metric NanoMSMARCO_256 NanoNQ_256
cosine_accuracy@1 0.44 0.56
cosine_accuracy@3 0.62 0.72
cosine_accuracy@5 0.68 0.78
cosine_accuracy@10 0.82 0.86
cosine_precision@1 0.44 0.56
cosine_precision@3 0.2067 0.24
cosine_precision@5 0.136 0.16
cosine_precision@10 0.082 0.092
cosine_recall@1 0.44 0.54
cosine_recall@3 0.62 0.67
cosine_recall@5 0.68 0.72
cosine_recall@10 0.82 0.82
cosine_ndcg@10 0.6219 0.6834
cosine_mrr@10 0.5601 0.6571
cosine_map@100 0.5703 0.638
query_active_dims 256.0 256.0
query_sparsity_ratio 0.9375 0.9375
corpus_active_dims 256.0 256.0
corpus_sparsity_ratio 0.9375 0.9375

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean_256
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nq"
        ],
        "max_active_dims": 256
    }
    
Metric Value
cosine_accuracy@1 0.5
cosine_accuracy@3 0.67
cosine_accuracy@5 0.73
cosine_accuracy@10 0.84
cosine_precision@1 0.5
cosine_precision@3 0.2233
cosine_precision@5 0.148
cosine_precision@10 0.087
cosine_recall@1 0.49
cosine_recall@3 0.645
cosine_recall@5 0.7
cosine_recall@10 0.82
cosine_ndcg@10 0.6527
cosine_mrr@10 0.6086
cosine_map@100 0.6042
query_active_dims 256.0
query_sparsity_ratio 0.9375
corpus_active_dims 256.0
corpus_sparsity_ratio 0.9375

Training Details

Training Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 99,000 training samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 10 tokens
    • mean: 11.71 tokens
    • max: 26 tokens
    • min: 4 tokens
    • mean: 131.81 tokens
    • max: 450 tokens
  • Samples:
    query answer
    who played the father in papa don't preach Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.
    where was the location of the battle of hastings Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.
    how many puppies can a dog give birth to Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]
  • Loss: CSRLoss with these parameters:
    {
        "beta": 0.1,
        "gamma": 1.0,
        "loss": "SparseMultipleNegativesRankingLoss(scale=20.0, similarity_fct='cos_sim')"
    }
    

Evaluation Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 1,000 evaluation samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 10 tokens
    • mean: 11.69 tokens
    • max: 23 tokens
    • min: 15 tokens
    • mean: 134.01 tokens
    • max: 512 tokens
  • Samples:
    query answer
    where is the tiber river located in italy Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.
    what kind of car does jay gatsby drive Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.
    who sings if i can dream about you I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]
  • Loss: CSRLoss with these parameters:
    {
        "beta": 0.1,
        "gamma": 1.0,
        "loss": "SparseMultipleNegativesRankingLoss(scale=20.0, similarity_fct='cos_sim')"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • learning_rate: 4e-05
  • num_train_epochs: 1
  • bf16: True
  • load_best_model_at_end: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 4e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss Validation Loss NanoMSMARCO_4_cosine_ndcg@10 NanoNQ_4_cosine_ndcg@10 NanoBEIR_mean_4_cosine_ndcg@10 NanoMSMARCO_16_cosine_ndcg@10 NanoNQ_16_cosine_ndcg@10 NanoBEIR_mean_16_cosine_ndcg@10 NanoMSMARCO_64_cosine_ndcg@10 NanoNQ_64_cosine_ndcg@10 NanoBEIR_mean_64_cosine_ndcg@10 NanoMSMARCO_256_cosine_ndcg@10 NanoNQ_256_cosine_ndcg@10 NanoBEIR_mean_256_cosine_ndcg@10
-1 -1 - - 0.0850 0.1222 0.1036 0.4256 0.3267 0.3761 0.5827 0.5843 0.5835 0.5987 0.7005 0.6496
0.0646 100 0.6568 - - - - - - - - - - - - -
0.1293 200 0.561 - - - - - - - - - - - - -
0.1939 300 0.5248 0.4118 0.131 0.1618 0.1464 0.3523 0.3159 0.3341 0.5989 0.5402 0.5695 0.6219 0.6834 0.6527
0.2586 400 0.4995 - - - - - - - - - - - - -
0.3232 500 0.484 - - - - - - - - - - - - -
0.3878 600 0.4773 0.3882 0.2023 0.1465 0.1744 0.3397 0.3617 0.3507 0.5710 0.5702 0.5706 0.6091 0.6610 0.6351
0.4525 700 0.464 - - - - - - - - - - - - -
0.5171 800 0.4529 - - - - - - - - - - - - -
0.5818 900 0.4524 0.3753 0.1495 0.1179 0.1337 0.3072 0.3473 0.3272 0.5718 0.5525 0.5622 0.6084 0.6660 0.6372
0.6464 1000 0.4486 - - - - - - - - - - - - -
0.7111 1100 0.4349 - - - - - - - - - - - - -
0.7757 1200 0.4382 0.3690 0.1815 0.0924 0.1370 0.3328 0.3493 0.3410 0.5311 0.5480 0.5396 0.6086 0.6486 0.6286
0.8403 1300 0.4394 - - - - - - - - - - - - -
0.9050 1400 0.427 - - - - - - - - - - - - -
0.9696 1500 0.4312 0.3666 0.1746 0.1350 0.1548 0.3395 0.2952 0.3174 0.5511 0.5252 0.5381 0.6162 0.6494 0.6328
-1 -1 - - 0.1310 0.1618 0.1464 0.3523 0.3159 0.3341 0.5989 0.5402 0.5695 0.6219 0.6834 0.6527
  • The bold row denotes the saved checkpoint.

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.145 kWh
  • Carbon Emitted: 0.056 kg of CO2
  • Hours Used: 0.379 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 4.2.0.dev0
  • Transformers: 4.52.4
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.5.1
  • Datasets: 2.21.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CSRLoss

@misc{wen2025matryoshkarevisitingsparsecoding,
      title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation},
      author={Tiansheng Wen and Yifei Wang and Zequn Zeng and Zhong Peng and Yudi Su and Xinyang Liu and Bo Chen and Hongwei Liu and Stefanie Jegelka and Chenyu You},
      year={2025},
      eprint={2503.01776},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2503.01776},
}

SparseMultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
1
Safetensors
Model size
335M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for tomaarsen/csr-mxbai-embed-large-v1-nq-cos-sim-scale-20-gamma-1

Finetuned
(36)
this model

Dataset used to train tomaarsen/csr-mxbai-embed-large-v1-nq-cos-sim-scale-20-gamma-1

Evaluation results