File size: 64,135 Bytes
d10d42c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 |
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sparse-encoder
- sparse
- csr
- generated_from_trainer
- dataset_size:99000
- loss:CSRLoss
- loss:SparseMultipleNegativesRankingLoss
base_model: mixedbread-ai/mxbai-embed-large-v1
widget:
- text: Saudi Arabia–United Arab Emirates relations However, the UAE and Saudi Arabia
continue to take somewhat differing stances on regional conflicts such the Yemeni
Civil War, where the UAE opposes Al-Islah, and supports the Southern Movement,
which has fought against Saudi-backed forces, and the Syrian Civil War, where
the UAE has disagreed with Saudi support for Islamist movements.[4]
- text: Economy of New Zealand New Zealand's diverse market economy has a sizable
service sector, accounting for 63% of all GDP activity in 2013.[17] Large scale
manufacturing industries include aluminium production, food processing, metal
fabrication, wood and paper products. Mining, manufacturing, electricity, gas,
water, and waste services accounted for 16.5% of GDP in 2013.[17] The primary
sector continues to dominate New Zealand's exports, despite accounting for 6.5%
of GDP in 2013.[17]
- text: who was the first president of indian science congress meeting held in kolkata
in 1914
- text: Get Over It (Eagles song) "Get Over It" is a song by the Eagles released as
a single after a fourteen-year breakup. It was also the first song written by
bandmates Don Henley and Glenn Frey when the band reunited. "Get Over It" was
played live for the first time during their Hell Freezes Over tour in 1994. It
returned the band to the U.S. Top 40 after a fourteen-year absence, peaking at
No. 31 on the Billboard Hot 100 chart. It also hit No. 4 on the Billboard Mainstream
Rock Tracks chart. The song was not played live by the Eagles after the "Hell
Freezes Over" tour in 1994. It remains the group's last Top 40 hit in the U.S.
- text: 'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion
who is considered by Christians to be one of the first Gentiles to convert to
the faith, as related in Acts of the Apostles.'
datasets:
- sentence-transformers/natural-questions
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- query_active_dims
- query_sparsity_ratio
- corpus_active_dims
- corpus_sparsity_ratio
co2_eq_emissions:
emissions: 56.314104914464366
energy_consumed: 0.14487732225320263
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.379
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: Sparse CSR model trained on Natural Questions
results:
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoMSMARCO 4
type: NanoMSMARCO_4
metrics:
- type: cosine_accuracy@1
value: 0.02
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.12
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.18
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.26
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.02
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.039999999999999994
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.036000000000000004
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.026000000000000002
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.02
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.12
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.18
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.26
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.13103120560180764
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.09107936507936508
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.10057358250385884
name: Cosine Map@100
- type: query_active_dims
value: 4.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9990234375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 4.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9990234375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNQ 4
type: NanoNQ_4
metrics:
- type: cosine_accuracy@1
value: 0.1
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.16
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.2
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.26
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.1
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.05333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.04
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.026000000000000002
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.1
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.16
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.19
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.24
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.1617581884859466
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.13905555555555554
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.1454920368793091
name: Cosine Map@100
- type: query_active_dims
value: 4.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9990234375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 4.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9990234375
name: Corpus Sparsity Ratio
- task:
type: sparse-nano-beir
name: Sparse Nano BEIR
dataset:
name: NanoBEIR mean 4
type: NanoBEIR_mean_4
metrics:
- type: cosine_accuracy@1
value: 0.060000000000000005
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.14
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.19
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.26
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.060000000000000005
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.04666666666666666
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.038000000000000006
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.026000000000000002
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.060000000000000005
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.14
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.185
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.25
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.14639469704387714
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.11506746031746032
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.12303280969158396
name: Cosine Map@100
- type: query_active_dims
value: 4.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9990234375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 4.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9990234375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoMSMARCO 16
type: NanoMSMARCO_16
metrics:
- type: cosine_accuracy@1
value: 0.14
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.32
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.44
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.62
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.14
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.10666666666666665
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.08800000000000001
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.062
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.14
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.32
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.44
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.62
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.35227434410844155
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.26915873015873015
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.2834889322403155
name: Cosine Map@100
- type: query_active_dims
value: 16.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.99609375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 16.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.99609375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNQ 16
type: NanoNQ_16
metrics:
- type: cosine_accuracy@1
value: 0.14
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.32
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.42
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.54
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.14
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.10666666666666666
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.084
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.054000000000000006
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.14
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.31
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.4
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.51
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.31588504937958484
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.25840476190476186
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.26639173210026346
name: Cosine Map@100
- type: query_active_dims
value: 16.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.99609375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 16.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.99609375
name: Corpus Sparsity Ratio
- task:
type: sparse-nano-beir
name: Sparse Nano BEIR
dataset:
name: NanoBEIR mean 16
type: NanoBEIR_mean_16
metrics:
- type: cosine_accuracy@1
value: 0.14
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.32
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.43
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5800000000000001
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.14
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.10666666666666666
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.08600000000000001
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.058
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.14
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.315
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.42000000000000004
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.565
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.33407969674401317
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.263781746031746
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.27494033217028946
name: Cosine Map@100
- type: query_active_dims
value: 16.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.99609375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 16.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.99609375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoMSMARCO 64
type: NanoMSMARCO_64
metrics:
- type: cosine_accuracy@1
value: 0.42
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.74
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.78
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.42
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.14800000000000002
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07800000000000001
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.42
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.6
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.74
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.78
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5989097939719981
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5405238095238094
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5485629711673361
name: Cosine Map@100
- type: query_active_dims
value: 64.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.984375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 64.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.984375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNQ 64
type: NanoNQ_64
metrics:
- type: cosine_accuracy@1
value: 0.36
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.58
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.74
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.78
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.36
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.15200000000000002
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08199999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.34
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.54
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.68
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.73
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5401684637852635
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4945238095238095
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.4792528475589284
name: Cosine Map@100
- type: query_active_dims
value: 64.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.984375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 64.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.984375
name: Corpus Sparsity Ratio
- task:
type: sparse-nano-beir
name: Sparse Nano BEIR
dataset:
name: NanoBEIR mean 64
type: NanoBEIR_mean_64
metrics:
- type: cosine_accuracy@1
value: 0.39
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.59
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.74
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.78
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.39
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.15000000000000002
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.38
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5700000000000001
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.71
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.755
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5695391288786308
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5175238095238095
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5139079093631322
name: Cosine Map@100
- type: query_active_dims
value: 64.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.984375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 64.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.984375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoMSMARCO 256
type: NanoMSMARCO_256
metrics:
- type: cosine_accuracy@1
value: 0.44
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.62
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.68
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.82
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.44
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.20666666666666667
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.136
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08199999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.44
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.62
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.68
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.82
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6219451051635295
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5601111111111111
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5703043330639237
name: Cosine Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNQ 256
type: NanoNQ_256
metrics:
- type: cosine_accuracy@1
value: 0.56
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.72
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.78
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.86
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.56
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.24
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.092
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.54
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.67
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.72
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.82
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6833794556448974
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6571349206349205
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6380047784658768
name: Cosine Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
- task:
type: sparse-nano-beir
name: Sparse Nano BEIR
dataset:
name: NanoBEIR mean 256
type: NanoBEIR_mean_256
metrics:
- type: cosine_accuracy@1
value: 0.5
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6699999999999999
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.73
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.84
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.22333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.14800000000000002
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.087
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.49
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.645
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.82
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6526622804042135
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6086230158730158
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6041545557649002
name: Cosine Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
---
# Sparse CSR model trained on Natural Questions
This is a [CSR Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) on the [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 4096-dimensional sparse vector space with 256 maximum active dimensions and can be used for semantic search and sparse retrieval.
## Model Details
### Model Description
- **Model Type:** CSR Sparse Encoder
- **Base model:** [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) <!-- at revision db9d1fe0f31addb4978201b2bf3e577f3f8900d2 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 4096 dimensions (trained with 256 maximum active dimensions)
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions)
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)
### Full Model Architecture
```
SparseEncoder(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): CSRSparsity({'input_dim': 1024, 'hidden_dim': 4096, 'k': 256, 'k_aux': 512, 'normalize': False, 'dead_threshold': 30})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/csr-mxbai-embed-large-v1-nq-cos-sim-scale-20-gamma-1")
# Run inference
queries = [
"who is cornelius in the book of acts",
]
documents = [
'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.',
"Joe Ranft Ranft reunited with Lasseter when he was hired by Pixar in 1991 as their head of story.[1] There he worked on all of their films produced up to 2006; this included Toy Story (for which he received an Academy Award nomination) and A Bug's Life, as the co-story writer and others as story supervisor. His final film was Cars. He also voiced characters in many of the films, including Heimlich the caterpillar in A Bug's Life, Wheezy the penguin in Toy Story 2, and Jacques the shrimp in Finding Nemo.[1]",
'Wonderful Tonight "Wonderful Tonight" is a ballad written by Eric Clapton. It was included on Clapton\'s 1977 album Slowhand. Clapton wrote the song about Pattie Boyd.[1] The female vocal harmonies on the song are provided by Marcella Detroit (then Marcy Levy) and Yvonne Elliman.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 4096] [3, 4096]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[0.7062, 0.2414, 0.2065]])
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Sparse Information Retrieval
* Datasets: `NanoMSMARCO_4` and `NanoNQ_4`
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
```json
{
"max_active_dims": 4
}
```
| Metric | NanoMSMARCO_4 | NanoNQ_4 |
|:----------------------|:--------------|:-----------|
| cosine_accuracy@1 | 0.02 | 0.1 |
| cosine_accuracy@3 | 0.12 | 0.16 |
| cosine_accuracy@5 | 0.18 | 0.2 |
| cosine_accuracy@10 | 0.26 | 0.26 |
| cosine_precision@1 | 0.02 | 0.1 |
| cosine_precision@3 | 0.04 | 0.0533 |
| cosine_precision@5 | 0.036 | 0.04 |
| cosine_precision@10 | 0.026 | 0.026 |
| cosine_recall@1 | 0.02 | 0.1 |
| cosine_recall@3 | 0.12 | 0.16 |
| cosine_recall@5 | 0.18 | 0.19 |
| cosine_recall@10 | 0.26 | 0.24 |
| **cosine_ndcg@10** | **0.131** | **0.1618** |
| cosine_mrr@10 | 0.0911 | 0.1391 |
| cosine_map@100 | 0.1006 | 0.1455 |
| query_active_dims | 4.0 | 4.0 |
| query_sparsity_ratio | 0.999 | 0.999 |
| corpus_active_dims | 4.0 | 4.0 |
| corpus_sparsity_ratio | 0.999 | 0.999 |
#### Sparse Nano BEIR
* Dataset: `NanoBEIR_mean_4`
* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
```json
{
"dataset_names": [
"msmarco",
"nq"
],
"max_active_dims": 4
}
```
| Metric | Value |
|:----------------------|:-----------|
| cosine_accuracy@1 | 0.06 |
| cosine_accuracy@3 | 0.14 |
| cosine_accuracy@5 | 0.19 |
| cosine_accuracy@10 | 0.26 |
| cosine_precision@1 | 0.06 |
| cosine_precision@3 | 0.0467 |
| cosine_precision@5 | 0.038 |
| cosine_precision@10 | 0.026 |
| cosine_recall@1 | 0.06 |
| cosine_recall@3 | 0.14 |
| cosine_recall@5 | 0.185 |
| cosine_recall@10 | 0.25 |
| **cosine_ndcg@10** | **0.1464** |
| cosine_mrr@10 | 0.1151 |
| cosine_map@100 | 0.123 |
| query_active_dims | 4.0 |
| query_sparsity_ratio | 0.999 |
| corpus_active_dims | 4.0 |
| corpus_sparsity_ratio | 0.999 |
#### Sparse Information Retrieval
* Datasets: `NanoMSMARCO_16` and `NanoNQ_16`
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
```json
{
"max_active_dims": 16
}
```
| Metric | NanoMSMARCO_16 | NanoNQ_16 |
|:----------------------|:---------------|:-----------|
| cosine_accuracy@1 | 0.14 | 0.14 |
| cosine_accuracy@3 | 0.32 | 0.32 |
| cosine_accuracy@5 | 0.44 | 0.42 |
| cosine_accuracy@10 | 0.62 | 0.54 |
| cosine_precision@1 | 0.14 | 0.14 |
| cosine_precision@3 | 0.1067 | 0.1067 |
| cosine_precision@5 | 0.088 | 0.084 |
| cosine_precision@10 | 0.062 | 0.054 |
| cosine_recall@1 | 0.14 | 0.14 |
| cosine_recall@3 | 0.32 | 0.31 |
| cosine_recall@5 | 0.44 | 0.4 |
| cosine_recall@10 | 0.62 | 0.51 |
| **cosine_ndcg@10** | **0.3523** | **0.3159** |
| cosine_mrr@10 | 0.2692 | 0.2584 |
| cosine_map@100 | 0.2835 | 0.2664 |
| query_active_dims | 16.0 | 16.0 |
| query_sparsity_ratio | 0.9961 | 0.9961 |
| corpus_active_dims | 16.0 | 16.0 |
| corpus_sparsity_ratio | 0.9961 | 0.9961 |
#### Sparse Nano BEIR
* Dataset: `NanoBEIR_mean_16`
* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
```json
{
"dataset_names": [
"msmarco",
"nq"
],
"max_active_dims": 16
}
```
| Metric | Value |
|:----------------------|:-----------|
| cosine_accuracy@1 | 0.14 |
| cosine_accuracy@3 | 0.32 |
| cosine_accuracy@5 | 0.43 |
| cosine_accuracy@10 | 0.58 |
| cosine_precision@1 | 0.14 |
| cosine_precision@3 | 0.1067 |
| cosine_precision@5 | 0.086 |
| cosine_precision@10 | 0.058 |
| cosine_recall@1 | 0.14 |
| cosine_recall@3 | 0.315 |
| cosine_recall@5 | 0.42 |
| cosine_recall@10 | 0.565 |
| **cosine_ndcg@10** | **0.3341** |
| cosine_mrr@10 | 0.2638 |
| cosine_map@100 | 0.2749 |
| query_active_dims | 16.0 |
| query_sparsity_ratio | 0.9961 |
| corpus_active_dims | 16.0 |
| corpus_sparsity_ratio | 0.9961 |
#### Sparse Information Retrieval
* Datasets: `NanoMSMARCO_64` and `NanoNQ_64`
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
```json
{
"max_active_dims": 64
}
```
| Metric | NanoMSMARCO_64 | NanoNQ_64 |
|:----------------------|:---------------|:-----------|
| cosine_accuracy@1 | 0.42 | 0.36 |
| cosine_accuracy@3 | 0.6 | 0.58 |
| cosine_accuracy@5 | 0.74 | 0.74 |
| cosine_accuracy@10 | 0.78 | 0.78 |
| cosine_precision@1 | 0.42 | 0.36 |
| cosine_precision@3 | 0.2 | 0.2 |
| cosine_precision@5 | 0.148 | 0.152 |
| cosine_precision@10 | 0.078 | 0.082 |
| cosine_recall@1 | 0.42 | 0.34 |
| cosine_recall@3 | 0.6 | 0.54 |
| cosine_recall@5 | 0.74 | 0.68 |
| cosine_recall@10 | 0.78 | 0.73 |
| **cosine_ndcg@10** | **0.5989** | **0.5402** |
| cosine_mrr@10 | 0.5405 | 0.4945 |
| cosine_map@100 | 0.5486 | 0.4793 |
| query_active_dims | 64.0 | 64.0 |
| query_sparsity_ratio | 0.9844 | 0.9844 |
| corpus_active_dims | 64.0 | 64.0 |
| corpus_sparsity_ratio | 0.9844 | 0.9844 |
#### Sparse Nano BEIR
* Dataset: `NanoBEIR_mean_64`
* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
```json
{
"dataset_names": [
"msmarco",
"nq"
],
"max_active_dims": 64
}
```
| Metric | Value |
|:----------------------|:-----------|
| cosine_accuracy@1 | 0.39 |
| cosine_accuracy@3 | 0.59 |
| cosine_accuracy@5 | 0.74 |
| cosine_accuracy@10 | 0.78 |
| cosine_precision@1 | 0.39 |
| cosine_precision@3 | 0.2 |
| cosine_precision@5 | 0.15 |
| cosine_precision@10 | 0.08 |
| cosine_recall@1 | 0.38 |
| cosine_recall@3 | 0.57 |
| cosine_recall@5 | 0.71 |
| cosine_recall@10 | 0.755 |
| **cosine_ndcg@10** | **0.5695** |
| cosine_mrr@10 | 0.5175 |
| cosine_map@100 | 0.5139 |
| query_active_dims | 64.0 |
| query_sparsity_ratio | 0.9844 |
| corpus_active_dims | 64.0 |
| corpus_sparsity_ratio | 0.9844 |
#### Sparse Information Retrieval
* Datasets: `NanoMSMARCO_256` and `NanoNQ_256`
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
```json
{
"max_active_dims": 256
}
```
| Metric | NanoMSMARCO_256 | NanoNQ_256 |
|:----------------------|:----------------|:-----------|
| cosine_accuracy@1 | 0.44 | 0.56 |
| cosine_accuracy@3 | 0.62 | 0.72 |
| cosine_accuracy@5 | 0.68 | 0.78 |
| cosine_accuracy@10 | 0.82 | 0.86 |
| cosine_precision@1 | 0.44 | 0.56 |
| cosine_precision@3 | 0.2067 | 0.24 |
| cosine_precision@5 | 0.136 | 0.16 |
| cosine_precision@10 | 0.082 | 0.092 |
| cosine_recall@1 | 0.44 | 0.54 |
| cosine_recall@3 | 0.62 | 0.67 |
| cosine_recall@5 | 0.68 | 0.72 |
| cosine_recall@10 | 0.82 | 0.82 |
| **cosine_ndcg@10** | **0.6219** | **0.6834** |
| cosine_mrr@10 | 0.5601 | 0.6571 |
| cosine_map@100 | 0.5703 | 0.638 |
| query_active_dims | 256.0 | 256.0 |
| query_sparsity_ratio | 0.9375 | 0.9375 |
| corpus_active_dims | 256.0 | 256.0 |
| corpus_sparsity_ratio | 0.9375 | 0.9375 |
#### Sparse Nano BEIR
* Dataset: `NanoBEIR_mean_256`
* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
```json
{
"dataset_names": [
"msmarco",
"nq"
],
"max_active_dims": 256
}
```
| Metric | Value |
|:----------------------|:-----------|
| cosine_accuracy@1 | 0.5 |
| cosine_accuracy@3 | 0.67 |
| cosine_accuracy@5 | 0.73 |
| cosine_accuracy@10 | 0.84 |
| cosine_precision@1 | 0.5 |
| cosine_precision@3 | 0.2233 |
| cosine_precision@5 | 0.148 |
| cosine_precision@10 | 0.087 |
| cosine_recall@1 | 0.49 |
| cosine_recall@3 | 0.645 |
| cosine_recall@5 | 0.7 |
| cosine_recall@10 | 0.82 |
| **cosine_ndcg@10** | **0.6527** |
| cosine_mrr@10 | 0.6086 |
| cosine_map@100 | 0.6042 |
| query_active_dims | 256.0 |
| query_sparsity_ratio | 0.9375 |
| corpus_active_dims | 256.0 |
| corpus_sparsity_ratio | 0.9375 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### natural-questions
* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 99,000 training samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | query | answer |
|:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 11.71 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 131.81 tokens</li><li>max: 450 tokens</li></ul> |
* Samples:
| query | answer |
|:--------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>who played the father in papa don't preach</code> | <code>Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.</code> |
| <code>where was the location of the battle of hastings</code> | <code>Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.</code> |
| <code>how many puppies can a dog give birth to</code> | <code>Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]</code> |
* Loss: [<code>CSRLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#csrloss) with these parameters:
```json
{
"beta": 0.1,
"gamma": 1.0,
"loss": "SparseMultipleNegativesRankingLoss(scale=20.0, similarity_fct='cos_sim')"
}
```
### Evaluation Dataset
#### natural-questions
* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 1,000 evaluation samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | query | answer |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 11.69 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 134.01 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| query | answer |
|:-------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>where is the tiber river located in italy</code> | <code>Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.</code> |
| <code>what kind of car does jay gatsby drive</code> | <code>Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.</code> |
| <code>who sings if i can dream about you</code> | <code>I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]</code> |
* Loss: [<code>CSRLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#csrloss) with these parameters:
```json
{
"beta": 0.1,
"gamma": 1.0,
"loss": "SparseMultipleNegativesRankingLoss(scale=20.0, similarity_fct='cos_sim')"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 4e-05
- `num_train_epochs`: 1
- `bf16`: True
- `load_best_model_at_end`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 4e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_4_cosine_ndcg@10 | NanoNQ_4_cosine_ndcg@10 | NanoBEIR_mean_4_cosine_ndcg@10 | NanoMSMARCO_16_cosine_ndcg@10 | NanoNQ_16_cosine_ndcg@10 | NanoBEIR_mean_16_cosine_ndcg@10 | NanoMSMARCO_64_cosine_ndcg@10 | NanoNQ_64_cosine_ndcg@10 | NanoBEIR_mean_64_cosine_ndcg@10 | NanoMSMARCO_256_cosine_ndcg@10 | NanoNQ_256_cosine_ndcg@10 | NanoBEIR_mean_256_cosine_ndcg@10 |
|:----------:|:-------:|:-------------:|:---------------:|:----------------------------:|:-----------------------:|:------------------------------:|:-----------------------------:|:------------------------:|:-------------------------------:|:-----------------------------:|:------------------------:|:-------------------------------:|:------------------------------:|:-------------------------:|:--------------------------------:|
| -1 | -1 | - | - | 0.0850 | 0.1222 | 0.1036 | 0.4256 | 0.3267 | 0.3761 | 0.5827 | 0.5843 | 0.5835 | 0.5987 | 0.7005 | 0.6496 |
| 0.0646 | 100 | 0.6568 | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1293 | 200 | 0.561 | - | - | - | - | - | - | - | - | - | - | - | - | - |
| **0.1939** | **300** | **0.5248** | **0.4118** | **0.131** | **0.1618** | **0.1464** | **0.3523** | **0.3159** | **0.3341** | **0.5989** | **0.5402** | **0.5695** | **0.6219** | **0.6834** | **0.6527** |
| 0.2586 | 400 | 0.4995 | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3232 | 500 | 0.484 | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3878 | 600 | 0.4773 | 0.3882 | 0.2023 | 0.1465 | 0.1744 | 0.3397 | 0.3617 | 0.3507 | 0.5710 | 0.5702 | 0.5706 | 0.6091 | 0.6610 | 0.6351 |
| 0.4525 | 700 | 0.464 | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5171 | 800 | 0.4529 | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5818 | 900 | 0.4524 | 0.3753 | 0.1495 | 0.1179 | 0.1337 | 0.3072 | 0.3473 | 0.3272 | 0.5718 | 0.5525 | 0.5622 | 0.6084 | 0.6660 | 0.6372 |
| 0.6464 | 1000 | 0.4486 | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7111 | 1100 | 0.4349 | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7757 | 1200 | 0.4382 | 0.3690 | 0.1815 | 0.0924 | 0.1370 | 0.3328 | 0.3493 | 0.3410 | 0.5311 | 0.5480 | 0.5396 | 0.6086 | 0.6486 | 0.6286 |
| 0.8403 | 1300 | 0.4394 | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9050 | 1400 | 0.427 | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9696 | 1500 | 0.4312 | 0.3666 | 0.1746 | 0.1350 | 0.1548 | 0.3395 | 0.2952 | 0.3174 | 0.5511 | 0.5252 | 0.5381 | 0.6162 | 0.6494 | 0.6328 |
| -1 | -1 | - | - | 0.1310 | 0.1618 | 0.1464 | 0.3523 | 0.3159 | 0.3341 | 0.5989 | 0.5402 | 0.5695 | 0.6219 | 0.6834 | 0.6527 |
* The bold row denotes the saved checkpoint.
### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 0.145 kWh
- **Carbon Emitted**: 0.056 kg of CO2
- **Hours Used**: 0.379 hours
### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB
### Framework Versions
- Python: 3.11.6
- Sentence Transformers: 4.2.0.dev0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.1
- Datasets: 2.21.0
- Tokenizers: 0.21.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### CSRLoss
```bibtex
@misc{wen2025matryoshkarevisitingsparsecoding,
title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation},
author={Tiansheng Wen and Yifei Wang and Zequn Zeng and Zhong Peng and Yudi Su and Xinyang Liu and Bo Chen and Hongwei Liu and Stefanie Jegelka and Chenyu You},
year={2025},
eprint={2503.01776},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2503.01776},
}
```
#### SparseMultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |