tomaarsen's picture
tomaarsen HF Staff
Add new SparseEncoder model
e04a8f1 verified
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - sparse-encoder
  - sparse
  - csr
  - generated_from_trainer
  - dataset_size:99000
  - loss:CSRLoss
  - loss:SparseMultipleNegativesRankingLoss
base_model: mixedbread-ai/mxbai-embed-large-v1
widget:
  - text: >-
      Saudi Arabia–United Arab Emirates relations However, the UAE and Saudi
      Arabia continue to take somewhat differing stances on regional conflicts
      such the Yemeni Civil War, where the UAE opposes Al-Islah, and supports
      the Southern Movement, which has fought against Saudi-backed forces, and
      the Syrian Civil War, where the UAE has disagreed with Saudi support for
      Islamist movements.[4]
  - text: >-
      Economy of New Zealand New Zealand's diverse market economy has a sizable
      service sector, accounting for 63% of all GDP activity in 2013.[17] Large
      scale manufacturing industries include aluminium production, food
      processing, metal fabrication, wood and paper products. Mining,
      manufacturing, electricity, gas, water, and waste services accounted for
      16.5% of GDP in 2013.[17] The primary sector continues to dominate New
      Zealand's exports, despite accounting for 6.5% of GDP in 2013.[17]
  - text: >-
      who was the first president of indian science congress meeting held in
      kolkata in 1914
  - text: >-
      Get Over It (Eagles song) "Get Over It" is a song by the Eagles released
      as a single after a fourteen-year breakup. It was also the first song
      written by bandmates Don Henley and Glenn Frey when the band reunited.
      "Get Over It" was played live for the first time during their Hell Freezes
      Over tour in 1994. It returned the band to the U.S. Top 40 after a
      fourteen-year absence, peaking at No. 31 on the Billboard Hot 100 chart.
      It also hit No. 4 on the Billboard Mainstream Rock Tracks chart. The song
      was not played live by the Eagles after the "Hell Freezes Over" tour in
      1994. It remains the group's last Top 40 hit in the U.S.
  - text: >-
      Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion
      who is considered by Christians to be one of the first Gentiles to convert
      to the faith, as related in Acts of the Apostles.
datasets:
  - sentence-transformers/natural-questions
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
  - dot_accuracy@1
  - dot_accuracy@3
  - dot_accuracy@5
  - dot_accuracy@10
  - dot_precision@1
  - dot_precision@3
  - dot_precision@5
  - dot_precision@10
  - dot_recall@1
  - dot_recall@3
  - dot_recall@5
  - dot_recall@10
  - dot_ndcg@10
  - dot_mrr@10
  - dot_map@100
  - query_active_dims
  - query_sparsity_ratio
  - corpus_active_dims
  - corpus_sparsity_ratio
co2_eq_emissions:
  emissions: 50.33638897970368
  energy_consumed: 0.1294986621620256
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.335
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
  - name: Sparse CSR model trained on Natural Questions
    results:
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoMSMARCO 4
          type: NanoMSMARCO_4
        metrics:
          - type: dot_accuracy@1
            value: 0.06
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.22
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.22
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.28
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.06
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.07333333333333333
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.04400000000000001
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.028000000000000008
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.06
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.22
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.22
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.28
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.1697596420238124
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.13452380952380952
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.14616428018874245
            name: Dot Map@100
          - type: query_active_dims
            value: 4
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9990234375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 4
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9990234375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoMSMARCO 8
          type: NanoMSMARCO_8
        metrics:
          - type: dot_accuracy@1
            value: 0.08
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.2
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.34
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.4
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.08
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.06666666666666667
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.068
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.04000000000000001
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.08
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.2
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.34
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.4
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.23173485139840844
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.17835714285714285
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.19541026376110485
            name: Dot Map@100
          - type: query_active_dims
            value: 8
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.998046875
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 8
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.998046875
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoMSMARCO 16
          type: NanoMSMARCO_16
        metrics:
          - type: dot_accuracy@1
            value: 0.28
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.48
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.54
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.62
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.28
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.15999999999999998
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.10800000000000001
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.062
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.28
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.48
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.54
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.62
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.44021635939536174
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.3835793650793651
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.394923411264133
            name: Dot Map@100
          - type: query_active_dims
            value: 16
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.99609375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 16
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.99609375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoMSMARCO 32
          type: NanoMSMARCO_32
        metrics:
          - type: dot_accuracy@1
            value: 0.3
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.46
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.6
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.7
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.3
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.15333333333333332
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.12
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.07
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.3
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.46
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.6
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.7
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.48681030478639387
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.4197380952380952
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.4254614535725137
            name: Dot Map@100
          - type: query_active_dims
            value: 32
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9921875
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 32
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9921875
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoMSMARCO 64
          type: NanoMSMARCO_64
        metrics:
          - type: dot_accuracy@1
            value: 0.36
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.52
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.6
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.76
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.36
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.1733333333333333
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.12
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.07600000000000001
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.36
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.52
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.6
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.76
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.5372607707612113
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.4696904761904762
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.4788022575587187
            name: Dot Map@100
          - type: query_active_dims
            value: 64
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.984375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 64
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.984375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoMSMARCO 128
          type: NanoMSMARCO_128
        metrics:
          - type: dot_accuracy@1
            value: 0.32
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.64
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.72
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.84
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.32
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.21333333333333335
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.14400000000000002
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.08399999999999999
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.32
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.64
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.72
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.84
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.5822669458808437
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.507267150580799
            name: Dot Map@100
          - type: query_active_dims
            value: 128
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.96875
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 128
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.96875
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoMSMARCO 256
          type: NanoMSMARCO_256
        metrics:
          - type: dot_accuracy@1
            value: 0.36
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.62
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.72
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.84
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.36
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.20666666666666667
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.14400000000000002
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.08399999999999999
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.36
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.62
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.72
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.84
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.5958389192755326
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5184047619047619
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5253233523294375
            name: Dot Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio

Sparse CSR model trained on Natural Questions

This is a CSR Sparse Encoder model finetuned from mixedbread-ai/mxbai-embed-large-v1 on the natural-questions dataset using the sentence-transformers library. It maps sentences & paragraphs to a 4096-dimensional sparse vector space with 256 maximum active dimensions and can be used for semantic search and sparse retrieval.

Model Details

Model Description

  • Model Type: CSR Sparse Encoder
  • Base model: mixedbread-ai/mxbai-embed-large-v1
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 4096 dimensions (trained with 256 maximum active dimensions)
  • Similarity Function: Dot Product
  • Training Dataset:
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SparseEncoder(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): CSRSparsity({'input_dim': 1024, 'hidden_dim': 4096, 'k': 256, 'k_aux': 512, 'normalize': False, 'dead_threshold': 30})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/csr-mxbai-embed-large-v1-nq-cos-sim-scale-5-gamma-0.1")
# Run inference
queries = [
    "who is cornelius in the book of acts",
]
documents = [
    'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.',
    "Joe Ranft Ranft reunited with Lasseter when he was hired by Pixar in 1991 as their head of story.[1] There he worked on all of their films produced up to 2006; this included Toy Story (for which he received an Academy Award nomination) and A Bug's Life, as the co-story writer and others as story supervisor. His final film was Cars. He also voiced characters in many of the films, including Heimlich the caterpillar in A Bug's Life, Wheezy the penguin in Toy Story 2, and Jacques the shrimp in Finding Nemo.[1]",
    'Wonderful Tonight "Wonderful Tonight" is a ballad written by Eric Clapton. It was included on Clapton\'s 1977 album Slowhand. Clapton wrote the song about Pattie Boyd.[1] The female vocal harmonies on the song are provided by Marcella Detroit (then Marcy Levy) and Yvonne Elliman.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 4096] [3, 4096]

# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[142.1139,  40.4378,  38.2739]])

Evaluation

Metrics

Sparse Information Retrieval

Metric Value
dot_accuracy@1 0.06
dot_accuracy@3 0.22
dot_accuracy@5 0.22
dot_accuracy@10 0.28
dot_precision@1 0.06
dot_precision@3 0.0733
dot_precision@5 0.044
dot_precision@10 0.028
dot_recall@1 0.06
dot_recall@3 0.22
dot_recall@5 0.22
dot_recall@10 0.28
dot_ndcg@10 0.1698
dot_mrr@10 0.1345
dot_map@100 0.1462
query_active_dims 4.0
query_sparsity_ratio 0.999
corpus_active_dims 4.0
corpus_sparsity_ratio 0.999

Sparse Information Retrieval

Metric Value
dot_accuracy@1 0.08
dot_accuracy@3 0.2
dot_accuracy@5 0.34
dot_accuracy@10 0.4
dot_precision@1 0.08
dot_precision@3 0.0667
dot_precision@5 0.068
dot_precision@10 0.04
dot_recall@1 0.08
dot_recall@3 0.2
dot_recall@5 0.34
dot_recall@10 0.4
dot_ndcg@10 0.2317
dot_mrr@10 0.1784
dot_map@100 0.1954
query_active_dims 8.0
query_sparsity_ratio 0.998
corpus_active_dims 8.0
corpus_sparsity_ratio 0.998

Sparse Information Retrieval

Metric Value
dot_accuracy@1 0.28
dot_accuracy@3 0.48
dot_accuracy@5 0.54
dot_accuracy@10 0.62
dot_precision@1 0.28
dot_precision@3 0.16
dot_precision@5 0.108
dot_precision@10 0.062
dot_recall@1 0.28
dot_recall@3 0.48
dot_recall@5 0.54
dot_recall@10 0.62
dot_ndcg@10 0.4402
dot_mrr@10 0.3836
dot_map@100 0.3949
query_active_dims 16.0
query_sparsity_ratio 0.9961
corpus_active_dims 16.0
corpus_sparsity_ratio 0.9961

Sparse Information Retrieval

Metric Value
dot_accuracy@1 0.3
dot_accuracy@3 0.46
dot_accuracy@5 0.6
dot_accuracy@10 0.7
dot_precision@1 0.3
dot_precision@3 0.1533
dot_precision@5 0.12
dot_precision@10 0.07
dot_recall@1 0.3
dot_recall@3 0.46
dot_recall@5 0.6
dot_recall@10 0.7
dot_ndcg@10 0.4868
dot_mrr@10 0.4197
dot_map@100 0.4255
query_active_dims 32.0
query_sparsity_ratio 0.9922
corpus_active_dims 32.0
corpus_sparsity_ratio 0.9922

Sparse Information Retrieval

Metric Value
dot_accuracy@1 0.36
dot_accuracy@3 0.52
dot_accuracy@5 0.6
dot_accuracy@10 0.76
dot_precision@1 0.36
dot_precision@3 0.1733
dot_precision@5 0.12
dot_precision@10 0.076
dot_recall@1 0.36
dot_recall@3 0.52
dot_recall@5 0.6
dot_recall@10 0.76
dot_ndcg@10 0.5373
dot_mrr@10 0.4697
dot_map@100 0.4788
query_active_dims 64.0
query_sparsity_ratio 0.9844
corpus_active_dims 64.0
corpus_sparsity_ratio 0.9844

Sparse Information Retrieval

Metric Value
dot_accuracy@1 0.32
dot_accuracy@3 0.64
dot_accuracy@5 0.72
dot_accuracy@10 0.84
dot_precision@1 0.32
dot_precision@3 0.2133
dot_precision@5 0.144
dot_precision@10 0.084
dot_recall@1 0.32
dot_recall@3 0.64
dot_recall@5 0.72
dot_recall@10 0.84
dot_ndcg@10 0.5823
dot_mrr@10 0.5
dot_map@100 0.5073
query_active_dims 128.0
query_sparsity_ratio 0.9688
corpus_active_dims 128.0
corpus_sparsity_ratio 0.9688

Sparse Information Retrieval

Metric Value
dot_accuracy@1 0.36
dot_accuracy@3 0.62
dot_accuracy@5 0.72
dot_accuracy@10 0.84
dot_precision@1 0.36
dot_precision@3 0.2067
dot_precision@5 0.144
dot_precision@10 0.084
dot_recall@1 0.36
dot_recall@3 0.62
dot_recall@5 0.72
dot_recall@10 0.84
dot_ndcg@10 0.5958
dot_mrr@10 0.5184
dot_map@100 0.5253
query_active_dims 256.0
query_sparsity_ratio 0.9375
corpus_active_dims 256.0
corpus_sparsity_ratio 0.9375

Training Details

Training Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 99,000 training samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 10 tokens
    • mean: 11.71 tokens
    • max: 26 tokens
    • min: 4 tokens
    • mean: 131.81 tokens
    • max: 450 tokens
  • Samples:
    query answer
    who played the father in papa don't preach Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.
    where was the location of the battle of hastings Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.
    how many puppies can a dog give birth to Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]
  • Loss: CSRLoss with these parameters:
    {
        "beta": 0.1,
        "gamma": 0.1,
        "loss": "SparseMultipleNegativesRankingLoss(scale=5.0, similarity_fct='cos_sim')"
    }
    

Evaluation Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 1,000 evaluation samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 10 tokens
    • mean: 11.69 tokens
    • max: 23 tokens
    • min: 15 tokens
    • mean: 134.01 tokens
    • max: 512 tokens
  • Samples:
    query answer
    where is the tiber river located in italy Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.
    what kind of car does jay gatsby drive Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.
    who sings if i can dream about you I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]
  • Loss: CSRLoss with these parameters:
    {
        "beta": 0.1,
        "gamma": 0.1,
        "loss": "SparseMultipleNegativesRankingLoss(scale=5.0, similarity_fct='cos_sim')"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • learning_rate: 4e-05
  • num_train_epochs: 1
  • bf16: True
  • load_best_model_at_end: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 4e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss Validation Loss NanoMSMARCO_4_dot_ndcg@10 NanoMSMARCO_8_dot_ndcg@10 NanoMSMARCO_16_dot_ndcg@10 NanoMSMARCO_32_dot_ndcg@10 NanoMSMARCO_64_dot_ndcg@10 NanoMSMARCO_128_dot_ndcg@10 NanoMSMARCO_256_dot_ndcg@10
-1 -1 - - 0.1017 0.2908 0.4027 0.5247 0.5770 0.5697 0.6298
0.0646 100 0.5458 - - - - - - - -
0.1293 200 0.5016 - - - - - - - -
0.1939 300 0.4845 0.4551 0.1698 0.2317 0.4402 0.4868 0.5373 0.5823 0.5958
0.2586 400 0.475 - - - - - - - -
0.3232 500 0.4681 - - - - - - - -
0.3878 600 0.4624 0.4370 0.0873 0.2026 0.3564 0.4182 0.5077 0.5727 0.5906
0.4525 700 0.4589 - - - - - - - -
0.5171 800 0.4547 - - - - - - - -
0.5818 900 0.4523 0.4284 0.1323 0.1842 0.3484 0.3763 0.4621 0.5478 0.5690
0.6464 1000 0.4505 - - - - - - - -
0.7111 1100 0.4484 - - - - - - - -
0.7757 1200 0.4474 0.4238 0.1341 0.1551 0.3362 0.3824 0.4837 0.5492 0.5906
0.8403 1300 0.4458 - - - - - - - -
0.9050 1400 0.4451 - - - - - - - -
0.9696 1500 0.4454 0.4222 0.1466 0.1904 0.3406 0.3836 0.4802 0.5513 0.5895
-1 -1 - - 0.1698 0.2317 0.4402 0.4868 0.5373 0.5823 0.5958
  • The bold row denotes the saved checkpoint.

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.129 kWh
  • Carbon Emitted: 0.050 kg of CO2
  • Hours Used: 0.335 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 4.2.0.dev0
  • Transformers: 4.52.4
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.5.1
  • Datasets: 2.21.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CSRLoss

@misc{wen2025matryoshkarevisitingsparsecoding,
      title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation},
      author={Tiansheng Wen and Yifei Wang and Zequn Zeng and Zhong Peng and Yudi Su and Xinyang Liu and Bo Chen and Hongwei Liu and Stefanie Jegelka and Chenyu You},
      year={2025},
      eprint={2503.01776},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2503.01776},
}

SparseMultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}