Sparse CSR model trained on Natural Questions
This is a CSR Sparse Encoder model finetuned from mixedbread-ai/mxbai-embed-large-v1 on the natural-questions dataset using the sentence-transformers library. It maps sentences & paragraphs to a 4096-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
Model Details
Model Description
- Model Type: CSR Sparse Encoder
- Base model: mixedbread-ai/mxbai-embed-large-v1
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 4096 dimensions
- Similarity Function: Dot Product
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Sparse Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sparse Encoders on Hugging Face
Full Model Architecture
SparseEncoder(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): CSRSparsity({'input_dim': 1024, 'hidden_dim': 4096, 'k': 256, 'k_aux': 512, 'normalize': False, 'dead_threshold': 30})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/csr-mxbai-embed-large-v1-nq-gemma5")
# Run inference
sentences = [
'who is cornelius in the book of acts',
'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.',
"Joe Ranft Ranft reunited with Lasseter when he was hired by Pixar in 1991 as their head of story.[1] There he worked on all of their films produced up to 2006; this included Toy Story (for which he received an Academy Award nomination) and A Bug's Life, as the co-story writer and others as story supervisor. His final film was Cars. He also voiced characters in many of the films, including Heimlich the caterpillar in A Bug's Life, Wheezy the penguin in Toy Story 2, and Jacques the shrimp in Finding Nemo.[1]",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# (3, 4096)
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Sparse Information Retrieval
- Datasets:
NanoMSMARCO
,NanoNFCorpus
,NanoNQ
,NanoMSMARCO
,NanoNFCorpus
,NanoNQ
,NanoMSMARCO
,NanoNFCorpus
,NanoNQ
,NanoMSMARCO
,NanoNFCorpus
,NanoNQ
,NanoClimateFEVER
,NanoDBPedia
,NanoFEVER
,NanoFiQA2018
,NanoHotpotQA
,NanoMSMARCO
,NanoNFCorpus
,NanoNQ
,NanoQuoraRetrieval
,NanoSCIDOCS
,NanoArguAna
,NanoSciFact
andNanoTouche2020
- Evaluated with
SparseInformationRetrievalEvaluator
Metric | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
dot_accuracy@1 | 0.42 | 0.36 | 0.6 | 0.3 | 0.74 | 0.78 | 0.54 | 0.84 | 0.9 | 0.5 | 0.34 | 0.58 | 0.551 |
dot_accuracy@3 | 0.66 | 0.58 | 0.66 | 0.44 | 0.86 | 0.88 | 0.62 | 0.96 | 0.98 | 0.66 | 0.78 | 0.68 | 0.8163 |
dot_accuracy@5 | 0.76 | 0.62 | 0.76 | 0.58 | 0.9 | 0.9 | 0.66 | 0.98 | 0.98 | 0.76 | 0.86 | 0.76 | 0.898 |
dot_accuracy@10 | 0.82 | 0.68 | 0.8 | 0.66 | 0.94 | 0.94 | 0.72 | 0.98 | 1.0 | 0.84 | 0.98 | 0.84 | 0.9796 |
dot_precision@1 | 0.42 | 0.36 | 0.6 | 0.3 | 0.74 | 0.78 | 0.54 | 0.84 | 0.9 | 0.5 | 0.34 | 0.58 | 0.551 |
dot_precision@3 | 0.22 | 0.34 | 0.2267 | 0.1733 | 0.64 | 0.3067 | 0.3 | 0.5333 | 0.4133 | 0.3333 | 0.26 | 0.24 | 0.5034 |
dot_precision@5 | 0.152 | 0.304 | 0.156 | 0.152 | 0.56 | 0.188 | 0.208 | 0.344 | 0.26 | 0.292 | 0.172 | 0.164 | 0.4816 |
dot_precision@10 | 0.082 | 0.25 | 0.084 | 0.096 | 0.454 | 0.098 | 0.118 | 0.176 | 0.138 | 0.204 | 0.098 | 0.096 | 0.4224 |
dot_recall@1 | 0.42 | 0.0442 | 0.57 | 0.1467 | 0.0792 | 0.7267 | 0.2926 | 0.42 | 0.7907 | 0.1067 | 0.34 | 0.555 | 0.0371 |
dot_recall@3 | 0.66 | 0.0768 | 0.63 | 0.24 | 0.1735 | 0.8467 | 0.4267 | 0.8 | 0.952 | 0.2097 | 0.78 | 0.67 | 0.1076 |
dot_recall@5 | 0.76 | 0.0903 | 0.72 | 0.3167 | 0.2409 | 0.8667 | 0.474 | 0.86 | 0.966 | 0.3017 | 0.86 | 0.745 | 0.1647 |
dot_recall@10 | 0.82 | 0.1281 | 0.76 | 0.379 | 0.3511 | 0.9067 | 0.5416 | 0.88 | 0.9967 | 0.4187 | 0.98 | 0.84 | 0.2739 |
dot_ndcg@10 | 0.623 | 0.3059 | 0.6666 | 0.3189 | 0.5897 | 0.8325 | 0.4983 | 0.8318 | 0.9495 | 0.4056 | 0.6735 | 0.6982 | 0.4645 |
dot_mrr@10 | 0.5596 | 0.4729 | 0.6562 | 0.4042 | 0.8142 | 0.8367 | 0.599 | 0.8983 | 0.94 | 0.6097 | 0.5741 | 0.6553 | 0.6914 |
dot_map@100 | 0.5681 | 0.1495 | 0.6392 | 0.2605 | 0.4387 | 0.8013 | 0.4531 | 0.7783 | 0.9293 | 0.3298 | 0.5747 | 0.6562 | 0.3402 |
row_non_zero_mean_query | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 |
row_sparsity_mean_query | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 |
row_non_zero_mean_corpus | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 |
row_sparsity_mean_corpus | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 |
Sparse Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
SparseNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "msmarco", "nfcorpus", "nq" ] }
Metric | Value |
---|---|
dot_accuracy@1 | 0.2733 |
dot_accuracy@3 | 0.4467 |
dot_accuracy@5 | 0.52 |
dot_accuracy@10 | 0.6267 |
dot_precision@1 | 0.2733 |
dot_precision@3 | 0.1822 |
dot_precision@5 | 0.148 |
dot_precision@10 | 0.1007 |
dot_recall@1 | 0.1916 |
dot_recall@3 | 0.3001 |
dot_recall@5 | 0.3474 |
dot_recall@10 | 0.4479 |
dot_ndcg@10 | 0.3651 |
dot_mrr@10 | 0.3779 |
dot_map@100 | 0.2884 |
row_non_zero_mean_query | 32.0 |
row_sparsity_mean_query | 0.9922 |
row_non_zero_mean_corpus | 32.0 |
row_sparsity_mean_corpus | 0.9922 |
Sparse Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
SparseNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "msmarco", "nfcorpus", "nq" ] }
Metric | Value |
---|---|
dot_accuracy@1 | 0.3533 |
dot_accuracy@3 | 0.4867 |
dot_accuracy@5 | 0.64 |
dot_accuracy@10 | 0.7267 |
dot_precision@1 | 0.3533 |
dot_precision@3 | 0.2022 |
dot_precision@5 | 0.1813 |
dot_precision@10 | 0.12 |
dot_recall@1 | 0.2598 |
dot_recall@3 | 0.3582 |
dot_recall@5 | 0.4801 |
dot_recall@10 | 0.5459 |
dot_ndcg@10 | 0.4541 |
dot_mrr@10 | 0.4588 |
dot_map@100 | 0.3673 |
row_non_zero_mean_query | 64.0 |
row_sparsity_mean_query | 0.9844 |
row_non_zero_mean_corpus | 64.0 |
row_sparsity_mean_corpus | 0.9844 |
Sparse Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
SparseNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "msmarco", "nfcorpus", "nq" ] }
Metric | Value |
---|---|
dot_accuracy@1 | 0.42 |
dot_accuracy@3 | 0.6133 |
dot_accuracy@5 | 0.6867 |
dot_accuracy@10 | 0.7667 |
dot_precision@1 | 0.42 |
dot_precision@3 | 0.2556 |
dot_precision@5 | 0.1973 |
dot_precision@10 | 0.1353 |
dot_recall@1 | 0.2939 |
dot_recall@3 | 0.4377 |
dot_recall@5 | 0.4927 |
dot_recall@10 | 0.5705 |
dot_ndcg@10 | 0.5051 |
dot_mrr@10 | 0.5339 |
dot_map@100 | 0.4102 |
row_non_zero_mean_query | 128.0 |
row_sparsity_mean_query | 0.9688 |
row_non_zero_mean_corpus | 128.0 |
row_sparsity_mean_corpus | 0.9688 |
Sparse Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
SparseNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "msmarco", "nfcorpus", "nq" ] }
Metric | Value |
---|---|
dot_accuracy@1 | 0.44 |
dot_accuracy@3 | 0.6333 |
dot_accuracy@5 | 0.7 |
dot_accuracy@10 | 0.7733 |
dot_precision@1 | 0.44 |
dot_precision@3 | 0.2667 |
dot_precision@5 | 0.2 |
dot_precision@10 | 0.1393 |
dot_recall@1 | 0.3182 |
dot_recall@3 | 0.463 |
dot_recall@5 | 0.51 |
dot_recall@10 | 0.5744 |
dot_ndcg@10 | 0.5235 |
dot_mrr@10 | 0.5504 |
dot_map@100 | 0.439 |
row_non_zero_mean_query | 256.0 |
row_sparsity_mean_query | 0.9375 |
row_non_zero_mean_corpus | 256.0 |
row_sparsity_mean_corpus | 0.9375 |
Sparse Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
SparseNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "climatefever", "dbpedia", "fever", "fiqa2018", "hotpotqa", "msmarco", "nfcorpus", "nq", "quoraretrieval", "scidocs", "arguana", "scifact", "touche2020" ] }
Metric | Value |
---|---|
dot_accuracy@1 | 0.5732 |
dot_accuracy@3 | 0.7366 |
dot_accuracy@5 | 0.8014 |
dot_accuracy@10 | 0.86 |
dot_precision@1 | 0.5732 |
dot_precision@3 | 0.3454 |
dot_precision@5 | 0.2641 |
dot_precision@10 | 0.1782 |
dot_recall@1 | 0.3484 |
dot_recall@3 | 0.5056 |
dot_recall@5 | 0.5666 |
dot_recall@10 | 0.6366 |
dot_ndcg@10 | 0.6045 |
dot_mrr@10 | 0.6701 |
dot_map@100 | 0.5322 |
row_non_zero_mean_query | 256.0 |
row_sparsity_mean_query | 0.9375 |
row_non_zero_mean_corpus | 256.0 |
row_sparsity_mean_corpus | 0.9375 |
Training Details
Training Dataset
natural-questions
- Dataset: natural-questions at f9e894e
- Size: 99,000 training samples
- Columns:
query
andanswer
- Approximate statistics based on the first 1000 samples:
query answer type string string details - min: 10 tokens
- mean: 11.71 tokens
- max: 26 tokens
- min: 4 tokens
- mean: 131.81 tokens
- max: 450 tokens
- Samples:
query answer who played the father in papa don't preach
Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.
where was the location of the battle of hastings
Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.
how many puppies can a dog give birth to
Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]
- Loss:
CSRLoss
with these parameters:{ "beta": 0.1, "gamma": 5, "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')" }
Evaluation Dataset
natural-questions
- Dataset: natural-questions at f9e894e
- Size: 1,000 evaluation samples
- Columns:
query
andanswer
- Approximate statistics based on the first 1000 samples:
query answer type string string details - min: 10 tokens
- mean: 11.69 tokens
- max: 23 tokens
- min: 15 tokens
- mean: 134.01 tokens
- max: 512 tokens
- Samples:
query answer where is the tiber river located in italy
Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.
what kind of car does jay gatsby drive
Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.
who sings if i can dream about you
I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]
- Loss:
CSRLoss
with these parameters:{ "beta": 0.1, "gamma": 5, "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64learning_rate
: 4e-05num_train_epochs
: 1bf16
: Trueload_best_model_at_end
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 4e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 | NanoClimateFEVER_dot_ndcg@10 | NanoDBPedia_dot_ndcg@10 | NanoFEVER_dot_ndcg@10 | NanoFiQA2018_dot_ndcg@10 | NanoHotpotQA_dot_ndcg@10 | NanoQuoraRetrieval_dot_ndcg@10 | NanoSCIDOCS_dot_ndcg@10 | NanoArguAna_dot_ndcg@10 | NanoSciFact_dot_ndcg@10 | NanoTouche2020_dot_ndcg@10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0646 | 100 | 0.599 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1293 | 200 | 0.69 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1939 | 300 | 0.61 | 0.6100 | 0.6357 | 0.2858 | 0.6522 | 0.5246 | - | - | - | - | - | - | - | - | - | - |
0.2586 | 400 | 0.7066 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3232 | 500 | 0.6641 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3878 | 600 | 0.7556 | 0.5275 | 0.6150 | 0.3067 | 0.6487 | 0.5235 | - | - | - | - | - | - | - | - | - | - |
0.4525 | 700 | 0.664 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5171 | 800 | 0.5407 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5818 | 900 | 0.63 | 0.4654 | 0.623 | 0.3055 | 0.6666 | 0.5317 | - | - | - | - | - | - | - | - | - | - |
0.6464 | 1000 | 0.5951 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7111 | 1100 | 0.6147 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7757 | 1200 | 0.7111 | 0.5087 | 0.6125 | 0.3061 | 0.6757 | 0.5314 | - | - | - | - | - | - | - | - | - | - |
0.8403 | 1300 | 0.6415 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9050 | 1400 | 0.592 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9696 | 1500 | 0.5953 | 0.5013 | 0.6054 | 0.3076 | 0.6573 | 0.5235 | - | - | - | - | - | - | - | - | - | - |
-1 | -1 | - | - | 0.6230 | 0.3059 | 0.6666 | 0.6045 | 0.3189 | 0.5897 | 0.8325 | 0.4983 | 0.8318 | 0.9495 | 0.4056 | 0.6735 | 0.6982 | 0.4645 |
- The bold row denotes the saved checkpoint.
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.188 kWh
- Carbon Emitted: 0.073 kg of CO2
- Hours Used: 0.525 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 4.2.0.dev0
- Transformers: 4.49.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.1
- Datasets: 2.21.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CSRLoss
@misc{wen2025matryoshkarevisitingsparsecoding,
title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation},
author={Tiansheng Wen and Yifei Wang and Zequn Zeng and Zhong Peng and Yudi Su and Xinyang Liu and Bo Chen and Hongwei Liu and Stefanie Jegelka and Chenyu You},
year={2025},
eprint={2503.01776},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2503.01776},
}
SparseMultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for tomaarsen/csr-mxbai-embed-large-v1-nq-gemma5
Base model
mixedbread-ai/mxbai-embed-large-v1Dataset used to train tomaarsen/csr-mxbai-embed-large-v1-nq-gemma5
Evaluation results
- Dot Accuracy@1 on NanoMSMARCOself-reported0.340
- Dot Accuracy@3 on NanoMSMARCOself-reported0.600
- Dot Accuracy@5 on NanoMSMARCOself-reported0.640
- Dot Accuracy@10 on NanoMSMARCOself-reported0.760
- Dot Precision@1 on NanoMSMARCOself-reported0.340
- Dot Precision@3 on NanoMSMARCOself-reported0.200
- Dot Precision@5 on NanoMSMARCOself-reported0.128
- Dot Precision@10 on NanoMSMARCOself-reported0.076
- Dot Recall@1 on NanoMSMARCOself-reported0.340
- Dot Recall@3 on NanoMSMARCOself-reported0.600