tomaarsen HF Staff commited on
Commit
509076d
·
verified ·
1 Parent(s): 09c3ece

Add new SparseEncoder model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
2_CSRSparsity/config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "input_dim": 1024,
3
+ "hidden_dim": 4096,
4
+ "k": 256,
5
+ "k_aux": 512,
6
+ "normalize": false,
7
+ "dead_threshold": 30
8
+ }
2_CSRSparsity/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a6325e7836bb35822fdb55ef4fcceb30ff539393edde430357d6d83866f8143
3
+ size 16830864
README.md ADDED
@@ -0,0 +1,2501 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sparse-encoder
8
+ - sparse
9
+ - csr
10
+ - generated_from_trainer
11
+ - dataset_size:99000
12
+ - loss:CSRLoss
13
+ - loss:SparseMultipleNegativesRankingLoss
14
+ base_model: mixedbread-ai/mxbai-embed-large-v1
15
+ widget:
16
+ - text: Saudi Arabia–United Arab Emirates relations However, the UAE and Saudi Arabia
17
+ continue to take somewhat differing stances on regional conflicts such the Yemeni
18
+ Civil War, where the UAE opposes Al-Islah, and supports the Southern Movement,
19
+ which has fought against Saudi-backed forces, and the Syrian Civil War, where
20
+ the UAE has disagreed with Saudi support for Islamist movements.[4]
21
+ - text: Economy of New Zealand New Zealand's diverse market economy has a sizable
22
+ service sector, accounting for 63% of all GDP activity in 2013.[17] Large scale
23
+ manufacturing industries include aluminium production, food processing, metal
24
+ fabrication, wood and paper products. Mining, manufacturing, electricity, gas,
25
+ water, and waste services accounted for 16.5% of GDP in 2013.[17] The primary
26
+ sector continues to dominate New Zealand's exports, despite accounting for 6.5%
27
+ of GDP in 2013.[17]
28
+ - text: who was the first president of indian science congress meeting held in kolkata
29
+ in 1914
30
+ - text: Get Over It (Eagles song) "Get Over It" is a song by the Eagles released as
31
+ a single after a fourteen-year breakup. It was also the first song written by
32
+ bandmates Don Henley and Glenn Frey when the band reunited. "Get Over It" was
33
+ played live for the first time during their Hell Freezes Over tour in 1994. It
34
+ returned the band to the U.S. Top 40 after a fourteen-year absence, peaking at
35
+ No. 31 on the Billboard Hot 100 chart. It also hit No. 4 on the Billboard Mainstream
36
+ Rock Tracks chart. The song was not played live by the Eagles after the "Hell
37
+ Freezes Over" tour in 1994. It remains the group's last Top 40 hit in the U.S.
38
+ - text: 'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion
39
+ who is considered by Christians to be one of the first Gentiles to convert to
40
+ the faith, as related in Acts of the Apostles.'
41
+ datasets:
42
+ - sentence-transformers/natural-questions
43
+ pipeline_tag: feature-extraction
44
+ library_name: sentence-transformers
45
+ metrics:
46
+ - dot_accuracy@1
47
+ - dot_accuracy@3
48
+ - dot_accuracy@5
49
+ - dot_accuracy@10
50
+ - dot_precision@1
51
+ - dot_precision@3
52
+ - dot_precision@5
53
+ - dot_precision@10
54
+ - dot_recall@1
55
+ - dot_recall@3
56
+ - dot_recall@5
57
+ - dot_recall@10
58
+ - dot_ndcg@10
59
+ - dot_mrr@10
60
+ - dot_map@100
61
+ - row_non_zero_mean_query
62
+ - row_sparsity_mean_query
63
+ - row_non_zero_mean_corpus
64
+ - row_sparsity_mean_corpus
65
+ co2_eq_emissions:
66
+ emissions: 73.20361367491836
67
+ energy_consumed: 0.18832836896882021
68
+ source: codecarbon
69
+ training_type: fine-tuning
70
+ on_cloud: false
71
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
72
+ ram_total_size: 31.777088165283203
73
+ hours_used: 0.525
74
+ hardware_used: 1 x NVIDIA GeForce RTX 3090
75
+ model-index:
76
+ - name: Sparse CSR model trained on Natural Questions
77
+ results:
78
+ - task:
79
+ type: sparse-information-retrieval
80
+ name: Sparse Information Retrieval
81
+ dataset:
82
+ name: NanoMSMARCO
83
+ type: NanoMSMARCO
84
+ metrics:
85
+ - type: dot_accuracy@1
86
+ value: 0.34
87
+ name: Dot Accuracy@1
88
+ - type: dot_accuracy@3
89
+ value: 0.6
90
+ name: Dot Accuracy@3
91
+ - type: dot_accuracy@5
92
+ value: 0.64
93
+ name: Dot Accuracy@5
94
+ - type: dot_accuracy@10
95
+ value: 0.76
96
+ name: Dot Accuracy@10
97
+ - type: dot_precision@1
98
+ value: 0.34
99
+ name: Dot Precision@1
100
+ - type: dot_precision@3
101
+ value: 0.2
102
+ name: Dot Precision@3
103
+ - type: dot_precision@5
104
+ value: 0.128
105
+ name: Dot Precision@5
106
+ - type: dot_precision@10
107
+ value: 0.07600000000000001
108
+ name: Dot Precision@10
109
+ - type: dot_recall@1
110
+ value: 0.34
111
+ name: Dot Recall@1
112
+ - type: dot_recall@3
113
+ value: 0.6
114
+ name: Dot Recall@3
115
+ - type: dot_recall@5
116
+ value: 0.64
117
+ name: Dot Recall@5
118
+ - type: dot_recall@10
119
+ value: 0.76
120
+ name: Dot Recall@10
121
+ - type: dot_ndcg@10
122
+ value: 0.5461951956850831
123
+ name: Dot Ndcg@10
124
+ - type: dot_mrr@10
125
+ value: 0.4783333333333332
126
+ name: Dot Mrr@10
127
+ - type: dot_map@100
128
+ value: 0.4886114783173606
129
+ name: Dot Map@100
130
+ - type: row_non_zero_mean_query
131
+ value: 32.0
132
+ name: Row Non Zero Mean Query
133
+ - type: row_sparsity_mean_query
134
+ value: 0.9921875
135
+ name: Row Sparsity Mean Query
136
+ - type: row_non_zero_mean_corpus
137
+ value: 32.0
138
+ name: Row Non Zero Mean Corpus
139
+ - type: row_sparsity_mean_corpus
140
+ value: 0.9921875
141
+ name: Row Sparsity Mean Corpus
142
+ - type: dot_accuracy@1
143
+ value: 0.42
144
+ name: Dot Accuracy@1
145
+ - type: dot_accuracy@3
146
+ value: 0.56
147
+ name: Dot Accuracy@3
148
+ - type: dot_accuracy@5
149
+ value: 0.72
150
+ name: Dot Accuracy@5
151
+ - type: dot_accuracy@10
152
+ value: 0.78
153
+ name: Dot Accuracy@10
154
+ - type: dot_precision@1
155
+ value: 0.42
156
+ name: Dot Precision@1
157
+ - type: dot_precision@3
158
+ value: 0.18666666666666668
159
+ name: Dot Precision@3
160
+ - type: dot_precision@5
161
+ value: 0.14400000000000002
162
+ name: Dot Precision@5
163
+ - type: dot_precision@10
164
+ value: 0.078
165
+ name: Dot Precision@10
166
+ - type: dot_recall@1
167
+ value: 0.42
168
+ name: Dot Recall@1
169
+ - type: dot_recall@3
170
+ value: 0.56
171
+ name: Dot Recall@3
172
+ - type: dot_recall@5
173
+ value: 0.72
174
+ name: Dot Recall@5
175
+ - type: dot_recall@10
176
+ value: 0.78
177
+ name: Dot Recall@10
178
+ - type: dot_ndcg@10
179
+ value: 0.5877208923649152
180
+ name: Dot Ndcg@10
181
+ - type: dot_mrr@10
182
+ value: 0.5268333333333333
183
+ name: Dot Mrr@10
184
+ - type: dot_map@100
185
+ value: 0.5379890352202846
186
+ name: Dot Map@100
187
+ - type: row_non_zero_mean_query
188
+ value: 64.0
189
+ name: Row Non Zero Mean Query
190
+ - type: row_sparsity_mean_query
191
+ value: 0.984375
192
+ name: Row Sparsity Mean Query
193
+ - type: row_non_zero_mean_corpus
194
+ value: 64.0
195
+ name: Row Non Zero Mean Corpus
196
+ - type: row_sparsity_mean_corpus
197
+ value: 0.984375
198
+ name: Row Sparsity Mean Corpus
199
+ - type: dot_accuracy@1
200
+ value: 0.42
201
+ name: Dot Accuracy@1
202
+ - type: dot_accuracy@3
203
+ value: 0.64
204
+ name: Dot Accuracy@3
205
+ - type: dot_accuracy@5
206
+ value: 0.72
207
+ name: Dot Accuracy@5
208
+ - type: dot_accuracy@10
209
+ value: 0.82
210
+ name: Dot Accuracy@10
211
+ - type: dot_precision@1
212
+ value: 0.42
213
+ name: Dot Precision@1
214
+ - type: dot_precision@3
215
+ value: 0.21333333333333332
216
+ name: Dot Precision@3
217
+ - type: dot_precision@5
218
+ value: 0.14400000000000002
219
+ name: Dot Precision@5
220
+ - type: dot_precision@10
221
+ value: 0.08199999999999999
222
+ name: Dot Precision@10
223
+ - type: dot_recall@1
224
+ value: 0.42
225
+ name: Dot Recall@1
226
+ - type: dot_recall@3
227
+ value: 0.64
228
+ name: Dot Recall@3
229
+ - type: dot_recall@5
230
+ value: 0.72
231
+ name: Dot Recall@5
232
+ - type: dot_recall@10
233
+ value: 0.82
234
+ name: Dot Recall@10
235
+ - type: dot_ndcg@10
236
+ value: 0.6170710567644069
237
+ name: Dot Ndcg@10
238
+ - type: dot_mrr@10
239
+ value: 0.5518571428571428
240
+ name: Dot Mrr@10
241
+ - type: dot_map@100
242
+ value: 0.5582688466837231
243
+ name: Dot Map@100
244
+ - type: row_non_zero_mean_query
245
+ value: 128.0
246
+ name: Row Non Zero Mean Query
247
+ - type: row_sparsity_mean_query
248
+ value: 0.96875
249
+ name: Row Sparsity Mean Query
250
+ - type: row_non_zero_mean_corpus
251
+ value: 128.0
252
+ name: Row Non Zero Mean Corpus
253
+ - type: row_sparsity_mean_corpus
254
+ value: 0.96875
255
+ name: Row Sparsity Mean Corpus
256
+ - type: dot_accuracy@1
257
+ value: 0.38
258
+ name: Dot Accuracy@1
259
+ - type: dot_accuracy@3
260
+ value: 0.66
261
+ name: Dot Accuracy@3
262
+ - type: dot_accuracy@5
263
+ value: 0.72
264
+ name: Dot Accuracy@5
265
+ - type: dot_accuracy@10
266
+ value: 0.82
267
+ name: Dot Accuracy@10
268
+ - type: dot_precision@1
269
+ value: 0.38
270
+ name: Dot Precision@1
271
+ - type: dot_precision@3
272
+ value: 0.22
273
+ name: Dot Precision@3
274
+ - type: dot_precision@5
275
+ value: 0.14400000000000002
276
+ name: Dot Precision@5
277
+ - type: dot_precision@10
278
+ value: 0.08199999999999999
279
+ name: Dot Precision@10
280
+ - type: dot_recall@1
281
+ value: 0.38
282
+ name: Dot Recall@1
283
+ - type: dot_recall@3
284
+ value: 0.66
285
+ name: Dot Recall@3
286
+ - type: dot_recall@5
287
+ value: 0.72
288
+ name: Dot Recall@5
289
+ - type: dot_recall@10
290
+ value: 0.82
291
+ name: Dot Recall@10
292
+ - type: dot_ndcg@10
293
+ value: 0.6054279406769176
294
+ name: Dot Ndcg@10
295
+ - type: dot_mrr@10
296
+ value: 0.536
297
+ name: Dot Mrr@10
298
+ - type: dot_map@100
299
+ value: 0.5451453839729702
300
+ name: Dot Map@100
301
+ - type: row_non_zero_mean_query
302
+ value: 256.0
303
+ name: Row Non Zero Mean Query
304
+ - type: row_sparsity_mean_query
305
+ value: 0.9375
306
+ name: Row Sparsity Mean Query
307
+ - type: row_non_zero_mean_corpus
308
+ value: 256.0
309
+ name: Row Non Zero Mean Corpus
310
+ - type: row_sparsity_mean_corpus
311
+ value: 0.9375
312
+ name: Row Sparsity Mean Corpus
313
+ - type: dot_accuracy@1
314
+ value: 0.42
315
+ name: Dot Accuracy@1
316
+ - type: dot_accuracy@3
317
+ value: 0.66
318
+ name: Dot Accuracy@3
319
+ - type: dot_accuracy@5
320
+ value: 0.76
321
+ name: Dot Accuracy@5
322
+ - type: dot_accuracy@10
323
+ value: 0.82
324
+ name: Dot Accuracy@10
325
+ - type: dot_precision@1
326
+ value: 0.42
327
+ name: Dot Precision@1
328
+ - type: dot_precision@3
329
+ value: 0.22
330
+ name: Dot Precision@3
331
+ - type: dot_precision@5
332
+ value: 0.15200000000000002
333
+ name: Dot Precision@5
334
+ - type: dot_precision@10
335
+ value: 0.08199999999999999
336
+ name: Dot Precision@10
337
+ - type: dot_recall@1
338
+ value: 0.42
339
+ name: Dot Recall@1
340
+ - type: dot_recall@3
341
+ value: 0.66
342
+ name: Dot Recall@3
343
+ - type: dot_recall@5
344
+ value: 0.76
345
+ name: Dot Recall@5
346
+ - type: dot_recall@10
347
+ value: 0.82
348
+ name: Dot Recall@10
349
+ - type: dot_ndcg@10
350
+ value: 0.6230021505155314
351
+ name: Dot Ndcg@10
352
+ - type: dot_mrr@10
353
+ value: 0.559579365079365
354
+ name: Dot Mrr@10
355
+ - type: dot_map@100
356
+ value: 0.5681061401796429
357
+ name: Dot Map@100
358
+ - type: row_non_zero_mean_query
359
+ value: 256.0
360
+ name: Row Non Zero Mean Query
361
+ - type: row_sparsity_mean_query
362
+ value: 0.9375
363
+ name: Row Sparsity Mean Query
364
+ - type: row_non_zero_mean_corpus
365
+ value: 256.0
366
+ name: Row Non Zero Mean Corpus
367
+ - type: row_sparsity_mean_corpus
368
+ value: 0.9375
369
+ name: Row Sparsity Mean Corpus
370
+ - task:
371
+ type: sparse-information-retrieval
372
+ name: Sparse Information Retrieval
373
+ dataset:
374
+ name: NanoNFCorpus
375
+ type: NanoNFCorpus
376
+ metrics:
377
+ - type: dot_accuracy@1
378
+ value: 0.24
379
+ name: Dot Accuracy@1
380
+ - type: dot_accuracy@3
381
+ value: 0.44
382
+ name: Dot Accuracy@3
383
+ - type: dot_accuracy@5
384
+ value: 0.52
385
+ name: Dot Accuracy@5
386
+ - type: dot_accuracy@10
387
+ value: 0.54
388
+ name: Dot Accuracy@10
389
+ - type: dot_precision@1
390
+ value: 0.24
391
+ name: Dot Precision@1
392
+ - type: dot_precision@3
393
+ value: 0.24666666666666665
394
+ name: Dot Precision@3
395
+ - type: dot_precision@5
396
+ value: 0.23600000000000002
397
+ name: Dot Precision@5
398
+ - type: dot_precision@10
399
+ value: 0.16799999999999998
400
+ name: Dot Precision@10
401
+ - type: dot_recall@1
402
+ value: 0.004669919461913613
403
+ name: Dot Recall@1
404
+ - type: dot_recall@3
405
+ value: 0.020427728422148655
406
+ name: Dot Recall@3
407
+ - type: dot_recall@5
408
+ value: 0.032225855738342704
409
+ name: Dot Recall@5
410
+ - type: dot_recall@10
411
+ value: 0.05379343324862708
412
+ name: Dot Recall@10
413
+ - type: dot_ndcg@10
414
+ value: 0.19455316428596148
415
+ name: Dot Ndcg@10
416
+ - type: dot_mrr@10
417
+ value: 0.341
418
+ name: Dot Mrr@10
419
+ - type: dot_map@100
420
+ value: 0.06151820759407443
421
+ name: Dot Map@100
422
+ - type: row_non_zero_mean_query
423
+ value: 32.0
424
+ name: Row Non Zero Mean Query
425
+ - type: row_sparsity_mean_query
426
+ value: 0.9921875
427
+ name: Row Sparsity Mean Query
428
+ - type: row_non_zero_mean_corpus
429
+ value: 32.0
430
+ name: Row Non Zero Mean Corpus
431
+ - type: row_sparsity_mean_corpus
432
+ value: 0.9921875
433
+ name: Row Sparsity Mean Corpus
434
+ - type: dot_accuracy@1
435
+ value: 0.3
436
+ name: Dot Accuracy@1
437
+ - type: dot_accuracy@3
438
+ value: 0.42
439
+ name: Dot Accuracy@3
440
+ - type: dot_accuracy@5
441
+ value: 0.5
442
+ name: Dot Accuracy@5
443
+ - type: dot_accuracy@10
444
+ value: 0.56
445
+ name: Dot Accuracy@10
446
+ - type: dot_precision@1
447
+ value: 0.3
448
+ name: Dot Precision@1
449
+ - type: dot_precision@3
450
+ value: 0.26
451
+ name: Dot Precision@3
452
+ - type: dot_precision@5
453
+ value: 0.26
454
+ name: Dot Precision@5
455
+ - type: dot_precision@10
456
+ value: 0.19799999999999998
457
+ name: Dot Precision@10
458
+ - type: dot_recall@1
459
+ value: 0.029542626120334554
460
+ name: Dot Recall@1
461
+ - type: dot_recall@3
462
+ value: 0.044652693879235976
463
+ name: Dot Recall@3
464
+ - type: dot_recall@5
465
+ value: 0.06028547009613851
466
+ name: Dot Recall@5
467
+ - type: dot_recall@10
468
+ value: 0.07755036888620734
469
+ name: Dot Recall@10
470
+ - type: dot_ndcg@10
471
+ value: 0.2366214062101772
472
+ name: Dot Ndcg@10
473
+ - type: dot_mrr@10
474
+ value: 0.37585714285714283
475
+ name: Dot Mrr@10
476
+ - type: dot_map@100
477
+ value: 0.10067936596479826
478
+ name: Dot Map@100
479
+ - type: row_non_zero_mean_query
480
+ value: 64.0
481
+ name: Row Non Zero Mean Query
482
+ - type: row_sparsity_mean_query
483
+ value: 0.984375
484
+ name: Row Sparsity Mean Query
485
+ - type: row_non_zero_mean_corpus
486
+ value: 64.0
487
+ name: Row Non Zero Mean Corpus
488
+ - type: row_sparsity_mean_corpus
489
+ value: 0.984375
490
+ name: Row Sparsity Mean Corpus
491
+ - type: dot_accuracy@1
492
+ value: 0.38
493
+ name: Dot Accuracy@1
494
+ - type: dot_accuracy@3
495
+ value: 0.54
496
+ name: Dot Accuracy@3
497
+ - type: dot_accuracy@5
498
+ value: 0.6
499
+ name: Dot Accuracy@5
500
+ - type: dot_accuracy@10
501
+ value: 0.64
502
+ name: Dot Accuracy@10
503
+ - type: dot_precision@1
504
+ value: 0.38
505
+ name: Dot Precision@1
506
+ - type: dot_precision@3
507
+ value: 0.33333333333333326
508
+ name: Dot Precision@3
509
+ - type: dot_precision@5
510
+ value: 0.3
511
+ name: Dot Precision@5
512
+ - type: dot_precision@10
513
+ value: 0.24
514
+ name: Dot Precision@10
515
+ - type: dot_recall@1
516
+ value: 0.03179014108396205
517
+ name: Dot Recall@1
518
+ - type: dot_recall@3
519
+ value: 0.06318690279554356
520
+ name: Dot Recall@3
521
+ - type: dot_recall@5
522
+ value: 0.07796877283624153
523
+ name: Dot Recall@5
524
+ - type: dot_recall@10
525
+ value: 0.1114799837292121
526
+ name: Dot Recall@10
527
+ - type: dot_ndcg@10
528
+ value: 0.2931027237585236
529
+ name: Dot Ndcg@10
530
+ - type: dot_mrr@10
531
+ value: 0.4740238095238095
532
+ name: Dot Mrr@10
533
+ - type: dot_map@100
534
+ value: 0.1230254488501482
535
+ name: Dot Map@100
536
+ - type: row_non_zero_mean_query
537
+ value: 128.0
538
+ name: Row Non Zero Mean Query
539
+ - type: row_sparsity_mean_query
540
+ value: 0.96875
541
+ name: Row Sparsity Mean Query
542
+ - type: row_non_zero_mean_corpus
543
+ value: 128.0
544
+ name: Row Non Zero Mean Corpus
545
+ - type: row_sparsity_mean_corpus
546
+ value: 0.96875
547
+ name: Row Sparsity Mean Corpus
548
+ - type: dot_accuracy@1
549
+ value: 0.38
550
+ name: Dot Accuracy@1
551
+ - type: dot_accuracy@3
552
+ value: 0.56
553
+ name: Dot Accuracy@3
554
+ - type: dot_accuracy@5
555
+ value: 0.62
556
+ name: Dot Accuracy@5
557
+ - type: dot_accuracy@10
558
+ value: 0.7
559
+ name: Dot Accuracy@10
560
+ - type: dot_precision@1
561
+ value: 0.38
562
+ name: Dot Precision@1
563
+ - type: dot_precision@3
564
+ value: 0.3466666666666666
565
+ name: Dot Precision@3
566
+ - type: dot_precision@5
567
+ value: 0.30000000000000004
568
+ name: Dot Precision@5
569
+ - type: dot_precision@10
570
+ value: 0.25
571
+ name: Dot Precision@10
572
+ - type: dot_recall@1
573
+ value: 0.04457964347980141
574
+ name: Dot Recall@1
575
+ - type: dot_recall@3
576
+ value: 0.0790728975013626
577
+ name: Dot Recall@3
578
+ - type: dot_recall@5
579
+ value: 0.09009883722070462
580
+ name: Dot Recall@5
581
+ - type: dot_recall@10
582
+ value: 0.13307439776648308
583
+ name: Dot Recall@10
584
+ - type: dot_ndcg@10
585
+ value: 0.30763421801409163
586
+ name: Dot Ndcg@10
587
+ - type: dot_mrr@10
588
+ value: 0.48096825396825393
589
+ name: Dot Mrr@10
590
+ - type: dot_map@100
591
+ value: 0.1488310784840863
592
+ name: Dot Map@100
593
+ - type: row_non_zero_mean_query
594
+ value: 256.0
595
+ name: Row Non Zero Mean Query
596
+ - type: row_sparsity_mean_query
597
+ value: 0.9375
598
+ name: Row Sparsity Mean Query
599
+ - type: row_non_zero_mean_corpus
600
+ value: 256.0
601
+ name: Row Non Zero Mean Corpus
602
+ - type: row_sparsity_mean_corpus
603
+ value: 0.9375
604
+ name: Row Sparsity Mean Corpus
605
+ - type: dot_accuracy@1
606
+ value: 0.36
607
+ name: Dot Accuracy@1
608
+ - type: dot_accuracy@3
609
+ value: 0.58
610
+ name: Dot Accuracy@3
611
+ - type: dot_accuracy@5
612
+ value: 0.62
613
+ name: Dot Accuracy@5
614
+ - type: dot_accuracy@10
615
+ value: 0.68
616
+ name: Dot Accuracy@10
617
+ - type: dot_precision@1
618
+ value: 0.36
619
+ name: Dot Precision@1
620
+ - type: dot_precision@3
621
+ value: 0.3399999999999999
622
+ name: Dot Precision@3
623
+ - type: dot_precision@5
624
+ value: 0.304
625
+ name: Dot Precision@5
626
+ - type: dot_precision@10
627
+ value: 0.25
628
+ name: Dot Precision@10
629
+ - type: dot_recall@1
630
+ value: 0.04421600711616505
631
+ name: Dot Recall@1
632
+ - type: dot_recall@3
633
+ value: 0.07676067662123591
634
+ name: Dot Recall@3
635
+ - type: dot_recall@5
636
+ value: 0.09031933665344426
637
+ name: Dot Recall@5
638
+ - type: dot_recall@10
639
+ value: 0.1280526321040542
640
+ name: Dot Recall@10
641
+ - type: dot_ndcg@10
642
+ value: 0.3058687263048634
643
+ name: Dot Ndcg@10
644
+ - type: dot_mrr@10
645
+ value: 0.47285714285714286
646
+ name: Dot Mrr@10
647
+ - type: dot_map@100
648
+ value: 0.14946123566548253
649
+ name: Dot Map@100
650
+ - type: row_non_zero_mean_query
651
+ value: 256.0
652
+ name: Row Non Zero Mean Query
653
+ - type: row_sparsity_mean_query
654
+ value: 0.9375
655
+ name: Row Sparsity Mean Query
656
+ - type: row_non_zero_mean_corpus
657
+ value: 256.0
658
+ name: Row Non Zero Mean Corpus
659
+ - type: row_sparsity_mean_corpus
660
+ value: 0.9375
661
+ name: Row Sparsity Mean Corpus
662
+ - task:
663
+ type: sparse-information-retrieval
664
+ name: Sparse Information Retrieval
665
+ dataset:
666
+ name: NanoNQ
667
+ type: NanoNQ
668
+ metrics:
669
+ - type: dot_accuracy@1
670
+ value: 0.24
671
+ name: Dot Accuracy@1
672
+ - type: dot_accuracy@3
673
+ value: 0.3
674
+ name: Dot Accuracy@3
675
+ - type: dot_accuracy@5
676
+ value: 0.4
677
+ name: Dot Accuracy@5
678
+ - type: dot_accuracy@10
679
+ value: 0.58
680
+ name: Dot Accuracy@10
681
+ - type: dot_precision@1
682
+ value: 0.24
683
+ name: Dot Precision@1
684
+ - type: dot_precision@3
685
+ value: 0.09999999999999998
686
+ name: Dot Precision@3
687
+ - type: dot_precision@5
688
+ value: 0.08
689
+ name: Dot Precision@5
690
+ - type: dot_precision@10
691
+ value: 0.05800000000000001
692
+ name: Dot Precision@10
693
+ - type: dot_recall@1
694
+ value: 0.23
695
+ name: Dot Recall@1
696
+ - type: dot_recall@3
697
+ value: 0.28
698
+ name: Dot Recall@3
699
+ - type: dot_recall@5
700
+ value: 0.37
701
+ name: Dot Recall@5
702
+ - type: dot_recall@10
703
+ value: 0.53
704
+ name: Dot Recall@10
705
+ - type: dot_ndcg@10
706
+ value: 0.35458104021173625
707
+ name: Dot Ndcg@10
708
+ - type: dot_mrr@10
709
+ value: 0.31448412698412687
710
+ name: Dot Mrr@10
711
+ - type: dot_map@100
712
+ value: 0.31511521921352853
713
+ name: Dot Map@100
714
+ - type: row_non_zero_mean_query
715
+ value: 32.0
716
+ name: Row Non Zero Mean Query
717
+ - type: row_sparsity_mean_query
718
+ value: 0.9921875
719
+ name: Row Sparsity Mean Query
720
+ - type: row_non_zero_mean_corpus
721
+ value: 32.0
722
+ name: Row Non Zero Mean Corpus
723
+ - type: row_sparsity_mean_corpus
724
+ value: 0.9921875
725
+ name: Row Sparsity Mean Corpus
726
+ - type: dot_accuracy@1
727
+ value: 0.34
728
+ name: Dot Accuracy@1
729
+ - type: dot_accuracy@3
730
+ value: 0.48
731
+ name: Dot Accuracy@3
732
+ - type: dot_accuracy@5
733
+ value: 0.7
734
+ name: Dot Accuracy@5
735
+ - type: dot_accuracy@10
736
+ value: 0.84
737
+ name: Dot Accuracy@10
738
+ - type: dot_precision@1
739
+ value: 0.34
740
+ name: Dot Precision@1
741
+ - type: dot_precision@3
742
+ value: 0.15999999999999998
743
+ name: Dot Precision@3
744
+ - type: dot_precision@5
745
+ value: 0.14
746
+ name: Dot Precision@5
747
+ - type: dot_precision@10
748
+ value: 0.08399999999999999
749
+ name: Dot Precision@10
750
+ - type: dot_recall@1
751
+ value: 0.33
752
+ name: Dot Recall@1
753
+ - type: dot_recall@3
754
+ value: 0.47
755
+ name: Dot Recall@3
756
+ - type: dot_recall@5
757
+ value: 0.66
758
+ name: Dot Recall@5
759
+ - type: dot_recall@10
760
+ value: 0.78
761
+ name: Dot Recall@10
762
+ - type: dot_ndcg@10
763
+ value: 0.5379040930401837
764
+ name: Dot Ndcg@10
765
+ - type: dot_mrr@10
766
+ value: 0.4738174603174602
767
+ name: Dot Mrr@10
768
+ - type: dot_map@100
769
+ value: 0.4633356301557521
770
+ name: Dot Map@100
771
+ - type: row_non_zero_mean_query
772
+ value: 64.0
773
+ name: Row Non Zero Mean Query
774
+ - type: row_sparsity_mean_query
775
+ value: 0.984375
776
+ name: Row Sparsity Mean Query
777
+ - type: row_non_zero_mean_corpus
778
+ value: 64.0
779
+ name: Row Non Zero Mean Corpus
780
+ - type: row_sparsity_mean_corpus
781
+ value: 0.984375
782
+ name: Row Sparsity Mean Corpus
783
+ - type: dot_accuracy@1
784
+ value: 0.46
785
+ name: Dot Accuracy@1
786
+ - type: dot_accuracy@3
787
+ value: 0.66
788
+ name: Dot Accuracy@3
789
+ - type: dot_accuracy@5
790
+ value: 0.74
791
+ name: Dot Accuracy@5
792
+ - type: dot_accuracy@10
793
+ value: 0.84
794
+ name: Dot Accuracy@10
795
+ - type: dot_precision@1
796
+ value: 0.46
797
+ name: Dot Precision@1
798
+ - type: dot_precision@3
799
+ value: 0.22
800
+ name: Dot Precision@3
801
+ - type: dot_precision@5
802
+ value: 0.14800000000000002
803
+ name: Dot Precision@5
804
+ - type: dot_precision@10
805
+ value: 0.08399999999999999
806
+ name: Dot Precision@10
807
+ - type: dot_recall@1
808
+ value: 0.43
809
+ name: Dot Recall@1
810
+ - type: dot_recall@3
811
+ value: 0.61
812
+ name: Dot Recall@3
813
+ - type: dot_recall@5
814
+ value: 0.68
815
+ name: Dot Recall@5
816
+ - type: dot_recall@10
817
+ value: 0.78
818
+ name: Dot Recall@10
819
+ - type: dot_ndcg@10
820
+ value: 0.6051159774116176
821
+ name: Dot Ndcg@10
822
+ - type: dot_mrr@10
823
+ value: 0.5759365079365079
824
+ name: Dot Mrr@10
825
+ - type: dot_map@100
826
+ value: 0.5492196930626584
827
+ name: Dot Map@100
828
+ - type: row_non_zero_mean_query
829
+ value: 128.0
830
+ name: Row Non Zero Mean Query
831
+ - type: row_sparsity_mean_query
832
+ value: 0.96875
833
+ name: Row Sparsity Mean Query
834
+ - type: row_non_zero_mean_corpus
835
+ value: 128.0
836
+ name: Row Non Zero Mean Corpus
837
+ - type: row_sparsity_mean_corpus
838
+ value: 0.96875
839
+ name: Row Sparsity Mean Corpus
840
+ - type: dot_accuracy@1
841
+ value: 0.56
842
+ name: Dot Accuracy@1
843
+ - type: dot_accuracy@3
844
+ value: 0.68
845
+ name: Dot Accuracy@3
846
+ - type: dot_accuracy@5
847
+ value: 0.76
848
+ name: Dot Accuracy@5
849
+ - type: dot_accuracy@10
850
+ value: 0.8
851
+ name: Dot Accuracy@10
852
+ - type: dot_precision@1
853
+ value: 0.56
854
+ name: Dot Precision@1
855
+ - type: dot_precision@3
856
+ value: 0.23333333333333336
857
+ name: Dot Precision@3
858
+ - type: dot_precision@5
859
+ value: 0.15600000000000003
860
+ name: Dot Precision@5
861
+ - type: dot_precision@10
862
+ value: 0.08599999999999998
863
+ name: Dot Precision@10
864
+ - type: dot_recall@1
865
+ value: 0.53
866
+ name: Dot Recall@1
867
+ - type: dot_recall@3
868
+ value: 0.65
869
+ name: Dot Recall@3
870
+ - type: dot_recall@5
871
+ value: 0.72
872
+ name: Dot Recall@5
873
+ - type: dot_recall@10
874
+ value: 0.77
875
+ name: Dot Recall@10
876
+ - type: dot_ndcg@10
877
+ value: 0.6573308671626625
878
+ name: Dot Ndcg@10
879
+ - type: dot_mrr@10
880
+ value: 0.6343571428571428
881
+ name: Dot Mrr@10
882
+ - type: dot_map@100
883
+ value: 0.6230919790541427
884
+ name: Dot Map@100
885
+ - type: row_non_zero_mean_query
886
+ value: 256.0
887
+ name: Row Non Zero Mean Query
888
+ - type: row_sparsity_mean_query
889
+ value: 0.9375
890
+ name: Row Sparsity Mean Query
891
+ - type: row_non_zero_mean_corpus
892
+ value: 256.0
893
+ name: Row Non Zero Mean Corpus
894
+ - type: row_sparsity_mean_corpus
895
+ value: 0.9375
896
+ name: Row Sparsity Mean Corpus
897
+ - type: dot_accuracy@1
898
+ value: 0.6
899
+ name: Dot Accuracy@1
900
+ - type: dot_accuracy@3
901
+ value: 0.66
902
+ name: Dot Accuracy@3
903
+ - type: dot_accuracy@5
904
+ value: 0.76
905
+ name: Dot Accuracy@5
906
+ - type: dot_accuracy@10
907
+ value: 0.8
908
+ name: Dot Accuracy@10
909
+ - type: dot_precision@1
910
+ value: 0.6
911
+ name: Dot Precision@1
912
+ - type: dot_precision@3
913
+ value: 0.22666666666666668
914
+ name: Dot Precision@3
915
+ - type: dot_precision@5
916
+ value: 0.15600000000000003
917
+ name: Dot Precision@5
918
+ - type: dot_precision@10
919
+ value: 0.08399999999999999
920
+ name: Dot Precision@10
921
+ - type: dot_recall@1
922
+ value: 0.57
923
+ name: Dot Recall@1
924
+ - type: dot_recall@3
925
+ value: 0.63
926
+ name: Dot Recall@3
927
+ - type: dot_recall@5
928
+ value: 0.72
929
+ name: Dot Recall@5
930
+ - type: dot_recall@10
931
+ value: 0.76
932
+ name: Dot Recall@10
933
+ - type: dot_ndcg@10
934
+ value: 0.6666113633916609
935
+ name: Dot Ndcg@10
936
+ - type: dot_mrr@10
937
+ value: 0.6562222222222222
938
+ name: Dot Mrr@10
939
+ - type: dot_map@100
940
+ value: 0.6391801455199051
941
+ name: Dot Map@100
942
+ - type: row_non_zero_mean_query
943
+ value: 256.0
944
+ name: Row Non Zero Mean Query
945
+ - type: row_sparsity_mean_query
946
+ value: 0.9375
947
+ name: Row Sparsity Mean Query
948
+ - type: row_non_zero_mean_corpus
949
+ value: 256.0
950
+ name: Row Non Zero Mean Corpus
951
+ - type: row_sparsity_mean_corpus
952
+ value: 0.9375
953
+ name: Row Sparsity Mean Corpus
954
+ - task:
955
+ type: sparse-nano-beir
956
+ name: Sparse Nano BEIR
957
+ dataset:
958
+ name: NanoBEIR mean
959
+ type: NanoBEIR_mean
960
+ metrics:
961
+ - type: dot_accuracy@1
962
+ value: 0.2733333333333334
963
+ name: Dot Accuracy@1
964
+ - type: dot_accuracy@3
965
+ value: 0.4466666666666667
966
+ name: Dot Accuracy@3
967
+ - type: dot_accuracy@5
968
+ value: 0.52
969
+ name: Dot Accuracy@5
970
+ - type: dot_accuracy@10
971
+ value: 0.6266666666666666
972
+ name: Dot Accuracy@10
973
+ - type: dot_precision@1
974
+ value: 0.2733333333333334
975
+ name: Dot Precision@1
976
+ - type: dot_precision@3
977
+ value: 0.1822222222222222
978
+ name: Dot Precision@3
979
+ - type: dot_precision@5
980
+ value: 0.148
981
+ name: Dot Precision@5
982
+ - type: dot_precision@10
983
+ value: 0.10066666666666667
984
+ name: Dot Precision@10
985
+ - type: dot_recall@1
986
+ value: 0.19155663982063786
987
+ name: Dot Recall@1
988
+ - type: dot_recall@3
989
+ value: 0.3001425761407162
990
+ name: Dot Recall@3
991
+ - type: dot_recall@5
992
+ value: 0.34740861857944755
993
+ name: Dot Recall@5
994
+ - type: dot_recall@10
995
+ value: 0.447931144416209
996
+ name: Dot Recall@10
997
+ - type: dot_ndcg@10
998
+ value: 0.36510980006092697
999
+ name: Dot Ndcg@10
1000
+ - type: dot_mrr@10
1001
+ value: 0.3779391534391534
1002
+ name: Dot Mrr@10
1003
+ - type: dot_map@100
1004
+ value: 0.28841496837498787
1005
+ name: Dot Map@100
1006
+ - type: row_non_zero_mean_query
1007
+ value: 32.0
1008
+ name: Row Non Zero Mean Query
1009
+ - type: row_sparsity_mean_query
1010
+ value: 0.9921875
1011
+ name: Row Sparsity Mean Query
1012
+ - type: row_non_zero_mean_corpus
1013
+ value: 32.0
1014
+ name: Row Non Zero Mean Corpus
1015
+ - type: row_sparsity_mean_corpus
1016
+ value: 0.9921875
1017
+ name: Row Sparsity Mean Corpus
1018
+ - type: dot_accuracy@1
1019
+ value: 0.35333333333333333
1020
+ name: Dot Accuracy@1
1021
+ - type: dot_accuracy@3
1022
+ value: 0.48666666666666664
1023
+ name: Dot Accuracy@3
1024
+ - type: dot_accuracy@5
1025
+ value: 0.64
1026
+ name: Dot Accuracy@5
1027
+ - type: dot_accuracy@10
1028
+ value: 0.7266666666666667
1029
+ name: Dot Accuracy@10
1030
+ - type: dot_precision@1
1031
+ value: 0.35333333333333333
1032
+ name: Dot Precision@1
1033
+ - type: dot_precision@3
1034
+ value: 0.20222222222222222
1035
+ name: Dot Precision@3
1036
+ - type: dot_precision@5
1037
+ value: 0.18133333333333335
1038
+ name: Dot Precision@5
1039
+ - type: dot_precision@10
1040
+ value: 0.12
1041
+ name: Dot Precision@10
1042
+ - type: dot_recall@1
1043
+ value: 0.2598475420401115
1044
+ name: Dot Recall@1
1045
+ - type: dot_recall@3
1046
+ value: 0.358217564626412
1047
+ name: Dot Recall@3
1048
+ - type: dot_recall@5
1049
+ value: 0.48009515669871283
1050
+ name: Dot Recall@5
1051
+ - type: dot_recall@10
1052
+ value: 0.5458501229620691
1053
+ name: Dot Recall@10
1054
+ - type: dot_ndcg@10
1055
+ value: 0.45408213053842533
1056
+ name: Dot Ndcg@10
1057
+ - type: dot_mrr@10
1058
+ value: 0.45883597883597876
1059
+ name: Dot Mrr@10
1060
+ - type: dot_map@100
1061
+ value: 0.3673346771136117
1062
+ name: Dot Map@100
1063
+ - type: row_non_zero_mean_query
1064
+ value: 64.0
1065
+ name: Row Non Zero Mean Query
1066
+ - type: row_sparsity_mean_query
1067
+ value: 0.984375
1068
+ name: Row Sparsity Mean Query
1069
+ - type: row_non_zero_mean_corpus
1070
+ value: 64.0
1071
+ name: Row Non Zero Mean Corpus
1072
+ - type: row_sparsity_mean_corpus
1073
+ value: 0.984375
1074
+ name: Row Sparsity Mean Corpus
1075
+ - type: dot_accuracy@1
1076
+ value: 0.42
1077
+ name: Dot Accuracy@1
1078
+ - type: dot_accuracy@3
1079
+ value: 0.6133333333333334
1080
+ name: Dot Accuracy@3
1081
+ - type: dot_accuracy@5
1082
+ value: 0.6866666666666665
1083
+ name: Dot Accuracy@5
1084
+ - type: dot_accuracy@10
1085
+ value: 0.7666666666666666
1086
+ name: Dot Accuracy@10
1087
+ - type: dot_precision@1
1088
+ value: 0.42
1089
+ name: Dot Precision@1
1090
+ - type: dot_precision@3
1091
+ value: 0.25555555555555554
1092
+ name: Dot Precision@3
1093
+ - type: dot_precision@5
1094
+ value: 0.19733333333333336
1095
+ name: Dot Precision@5
1096
+ - type: dot_precision@10
1097
+ value: 0.1353333333333333
1098
+ name: Dot Precision@10
1099
+ - type: dot_recall@1
1100
+ value: 0.29393004702798736
1101
+ name: Dot Recall@1
1102
+ - type: dot_recall@3
1103
+ value: 0.43772896759851454
1104
+ name: Dot Recall@3
1105
+ - type: dot_recall@5
1106
+ value: 0.4926562576120805
1107
+ name: Dot Recall@5
1108
+ - type: dot_recall@10
1109
+ value: 0.5704933279097374
1110
+ name: Dot Recall@10
1111
+ - type: dot_ndcg@10
1112
+ value: 0.5050965859781827
1113
+ name: Dot Ndcg@10
1114
+ - type: dot_mrr@10
1115
+ value: 0.5339391534391534
1116
+ name: Dot Mrr@10
1117
+ - type: dot_map@100
1118
+ value: 0.41017132953217655
1119
+ name: Dot Map@100
1120
+ - type: row_non_zero_mean_query
1121
+ value: 128.0
1122
+ name: Row Non Zero Mean Query
1123
+ - type: row_sparsity_mean_query
1124
+ value: 0.96875
1125
+ name: Row Sparsity Mean Query
1126
+ - type: row_non_zero_mean_corpus
1127
+ value: 128.0
1128
+ name: Row Non Zero Mean Corpus
1129
+ - type: row_sparsity_mean_corpus
1130
+ value: 0.96875
1131
+ name: Row Sparsity Mean Corpus
1132
+ - type: dot_accuracy@1
1133
+ value: 0.44
1134
+ name: Dot Accuracy@1
1135
+ - type: dot_accuracy@3
1136
+ value: 0.6333333333333334
1137
+ name: Dot Accuracy@3
1138
+ - type: dot_accuracy@5
1139
+ value: 0.6999999999999998
1140
+ name: Dot Accuracy@5
1141
+ - type: dot_accuracy@10
1142
+ value: 0.7733333333333334
1143
+ name: Dot Accuracy@10
1144
+ - type: dot_precision@1
1145
+ value: 0.44
1146
+ name: Dot Precision@1
1147
+ - type: dot_precision@3
1148
+ value: 0.26666666666666666
1149
+ name: Dot Precision@3
1150
+ - type: dot_precision@5
1151
+ value: 0.20000000000000004
1152
+ name: Dot Precision@5
1153
+ - type: dot_precision@10
1154
+ value: 0.1393333333333333
1155
+ name: Dot Precision@10
1156
+ - type: dot_recall@1
1157
+ value: 0.31819321449326715
1158
+ name: Dot Recall@1
1159
+ - type: dot_recall@3
1160
+ value: 0.4630242991671209
1161
+ name: Dot Recall@3
1162
+ - type: dot_recall@5
1163
+ value: 0.5100329457402348
1164
+ name: Dot Recall@5
1165
+ - type: dot_recall@10
1166
+ value: 0.5743581325888277
1167
+ name: Dot Recall@10
1168
+ - type: dot_ndcg@10
1169
+ value: 0.5234643419512239
1170
+ name: Dot Ndcg@10
1171
+ - type: dot_mrr@10
1172
+ value: 0.5504417989417989
1173
+ name: Dot Mrr@10
1174
+ - type: dot_map@100
1175
+ value: 0.4390228138370664
1176
+ name: Dot Map@100
1177
+ - type: row_non_zero_mean_query
1178
+ value: 256.0
1179
+ name: Row Non Zero Mean Query
1180
+ - type: row_sparsity_mean_query
1181
+ value: 0.9375
1182
+ name: Row Sparsity Mean Query
1183
+ - type: row_non_zero_mean_corpus
1184
+ value: 256.0
1185
+ name: Row Non Zero Mean Corpus
1186
+ - type: row_sparsity_mean_corpus
1187
+ value: 0.9375
1188
+ name: Row Sparsity Mean Corpus
1189
+ - type: dot_accuracy@1
1190
+ value: 0.5731554160125589
1191
+ name: Dot Accuracy@1
1192
+ - type: dot_accuracy@3
1193
+ value: 0.7366405023547882
1194
+ name: Dot Accuracy@3
1195
+ - type: dot_accuracy@5
1196
+ value: 0.80138147566719
1197
+ name: Dot Accuracy@5
1198
+ - type: dot_accuracy@10
1199
+ value: 0.8599686028257456
1200
+ name: Dot Accuracy@10
1201
+ - type: dot_precision@1
1202
+ value: 0.5731554160125589
1203
+ name: Dot Precision@1
1204
+ - type: dot_precision@3
1205
+ value: 0.3453898482469911
1206
+ name: Dot Precision@3
1207
+ - type: dot_precision@5
1208
+ value: 0.26412558869701724
1209
+ name: Dot Precision@5
1210
+ - type: dot_precision@10
1211
+ value: 0.17818838304552587
1212
+ name: Dot Precision@10
1213
+ - type: dot_recall@1
1214
+ value: 0.3483653457738811
1215
+ name: Dot Recall@1
1216
+ - type: dot_recall@3
1217
+ value: 0.5056041615261917
1218
+ name: Dot Recall@3
1219
+ - type: dot_recall@5
1220
+ value: 0.5666121938396027
1221
+ name: Dot Recall@5
1222
+ - type: dot_recall@10
1223
+ value: 0.6365903026311346
1224
+ name: Dot Recall@10
1225
+ - type: dot_ndcg@10
1226
+ value: 0.6044636061819838
1227
+ name: Dot Ndcg@10
1228
+ - type: dot_mrr@10
1229
+ value: 0.6701240562158929
1230
+ name: Dot Mrr@10
1231
+ - type: dot_map@100
1232
+ value: 0.532208950979869
1233
+ name: Dot Map@100
1234
+ - type: row_non_zero_mean_query
1235
+ value: 256.0
1236
+ name: Row Non Zero Mean Query
1237
+ - type: row_sparsity_mean_query
1238
+ value: 0.9375
1239
+ name: Row Sparsity Mean Query
1240
+ - type: row_non_zero_mean_corpus
1241
+ value: 256.0
1242
+ name: Row Non Zero Mean Corpus
1243
+ - type: row_sparsity_mean_corpus
1244
+ value: 0.9375
1245
+ name: Row Sparsity Mean Corpus
1246
+ - task:
1247
+ type: sparse-information-retrieval
1248
+ name: Sparse Information Retrieval
1249
+ dataset:
1250
+ name: NanoClimateFEVER
1251
+ type: NanoClimateFEVER
1252
+ metrics:
1253
+ - type: dot_accuracy@1
1254
+ value: 0.3
1255
+ name: Dot Accuracy@1
1256
+ - type: dot_accuracy@3
1257
+ value: 0.44
1258
+ name: Dot Accuracy@3
1259
+ - type: dot_accuracy@5
1260
+ value: 0.58
1261
+ name: Dot Accuracy@5
1262
+ - type: dot_accuracy@10
1263
+ value: 0.66
1264
+ name: Dot Accuracy@10
1265
+ - type: dot_precision@1
1266
+ value: 0.3
1267
+ name: Dot Precision@1
1268
+ - type: dot_precision@3
1269
+ value: 0.1733333333333333
1270
+ name: Dot Precision@3
1271
+ - type: dot_precision@5
1272
+ value: 0.152
1273
+ name: Dot Precision@5
1274
+ - type: dot_precision@10
1275
+ value: 0.096
1276
+ name: Dot Precision@10
1277
+ - type: dot_recall@1
1278
+ value: 0.14666666666666667
1279
+ name: Dot Recall@1
1280
+ - type: dot_recall@3
1281
+ value: 0.24
1282
+ name: Dot Recall@3
1283
+ - type: dot_recall@5
1284
+ value: 0.31666666666666665
1285
+ name: Dot Recall@5
1286
+ - type: dot_recall@10
1287
+ value: 0.379
1288
+ name: Dot Recall@10
1289
+ - type: dot_ndcg@10
1290
+ value: 0.3188914956894916
1291
+ name: Dot Ndcg@10
1292
+ - type: dot_mrr@10
1293
+ value: 0.40419047619047616
1294
+ name: Dot Mrr@10
1295
+ - type: dot_map@100
1296
+ value: 0.26051323127424997
1297
+ name: Dot Map@100
1298
+ - type: row_non_zero_mean_query
1299
+ value: 256.0
1300
+ name: Row Non Zero Mean Query
1301
+ - type: row_sparsity_mean_query
1302
+ value: 0.9375
1303
+ name: Row Sparsity Mean Query
1304
+ - type: row_non_zero_mean_corpus
1305
+ value: 256.0
1306
+ name: Row Non Zero Mean Corpus
1307
+ - type: row_sparsity_mean_corpus
1308
+ value: 0.9375
1309
+ name: Row Sparsity Mean Corpus
1310
+ - task:
1311
+ type: sparse-information-retrieval
1312
+ name: Sparse Information Retrieval
1313
+ dataset:
1314
+ name: NanoDBPedia
1315
+ type: NanoDBPedia
1316
+ metrics:
1317
+ - type: dot_accuracy@1
1318
+ value: 0.74
1319
+ name: Dot Accuracy@1
1320
+ - type: dot_accuracy@3
1321
+ value: 0.86
1322
+ name: Dot Accuracy@3
1323
+ - type: dot_accuracy@5
1324
+ value: 0.9
1325
+ name: Dot Accuracy@5
1326
+ - type: dot_accuracy@10
1327
+ value: 0.94
1328
+ name: Dot Accuracy@10
1329
+ - type: dot_precision@1
1330
+ value: 0.74
1331
+ name: Dot Precision@1
1332
+ - type: dot_precision@3
1333
+ value: 0.64
1334
+ name: Dot Precision@3
1335
+ - type: dot_precision@5
1336
+ value: 0.56
1337
+ name: Dot Precision@5
1338
+ - type: dot_precision@10
1339
+ value: 0.45399999999999996
1340
+ name: Dot Precision@10
1341
+ - type: dot_recall@1
1342
+ value: 0.07917649980287217
1343
+ name: Dot Recall@1
1344
+ - type: dot_recall@3
1345
+ value: 0.17349972000383132
1346
+ name: Dot Recall@3
1347
+ - type: dot_recall@5
1348
+ value: 0.24092496180273404
1349
+ name: Dot Recall@5
1350
+ - type: dot_recall@10
1351
+ value: 0.35114625789901227
1352
+ name: Dot Recall@10
1353
+ - type: dot_ndcg@10
1354
+ value: 0.5896892964374201
1355
+ name: Dot Ndcg@10
1356
+ - type: dot_mrr@10
1357
+ value: 0.8141904761904764
1358
+ name: Dot Mrr@10
1359
+ - type: dot_map@100
1360
+ value: 0.43868920344880336
1361
+ name: Dot Map@100
1362
+ - type: row_non_zero_mean_query
1363
+ value: 256.0
1364
+ name: Row Non Zero Mean Query
1365
+ - type: row_sparsity_mean_query
1366
+ value: 0.9375
1367
+ name: Row Sparsity Mean Query
1368
+ - type: row_non_zero_mean_corpus
1369
+ value: 256.0
1370
+ name: Row Non Zero Mean Corpus
1371
+ - type: row_sparsity_mean_corpus
1372
+ value: 0.9375
1373
+ name: Row Sparsity Mean Corpus
1374
+ - task:
1375
+ type: sparse-information-retrieval
1376
+ name: Sparse Information Retrieval
1377
+ dataset:
1378
+ name: NanoFEVER
1379
+ type: NanoFEVER
1380
+ metrics:
1381
+ - type: dot_accuracy@1
1382
+ value: 0.78
1383
+ name: Dot Accuracy@1
1384
+ - type: dot_accuracy@3
1385
+ value: 0.88
1386
+ name: Dot Accuracy@3
1387
+ - type: dot_accuracy@5
1388
+ value: 0.9
1389
+ name: Dot Accuracy@5
1390
+ - type: dot_accuracy@10
1391
+ value: 0.94
1392
+ name: Dot Accuracy@10
1393
+ - type: dot_precision@1
1394
+ value: 0.78
1395
+ name: Dot Precision@1
1396
+ - type: dot_precision@3
1397
+ value: 0.30666666666666664
1398
+ name: Dot Precision@3
1399
+ - type: dot_precision@5
1400
+ value: 0.18799999999999997
1401
+ name: Dot Precision@5
1402
+ - type: dot_precision@10
1403
+ value: 0.09799999999999998
1404
+ name: Dot Precision@10
1405
+ - type: dot_recall@1
1406
+ value: 0.7266666666666666
1407
+ name: Dot Recall@1
1408
+ - type: dot_recall@3
1409
+ value: 0.8466666666666666
1410
+ name: Dot Recall@3
1411
+ - type: dot_recall@5
1412
+ value: 0.8666666666666666
1413
+ name: Dot Recall@5
1414
+ - type: dot_recall@10
1415
+ value: 0.9066666666666666
1416
+ name: Dot Recall@10
1417
+ - type: dot_ndcg@10
1418
+ value: 0.8324754718241318
1419
+ name: Dot Ndcg@10
1420
+ - type: dot_mrr@10
1421
+ value: 0.8367460317460318
1422
+ name: Dot Mrr@10
1423
+ - type: dot_map@100
1424
+ value: 0.8012874752784108
1425
+ name: Dot Map@100
1426
+ - type: row_non_zero_mean_query
1427
+ value: 256.0
1428
+ name: Row Non Zero Mean Query
1429
+ - type: row_sparsity_mean_query
1430
+ value: 0.9375
1431
+ name: Row Sparsity Mean Query
1432
+ - type: row_non_zero_mean_corpus
1433
+ value: 256.0
1434
+ name: Row Non Zero Mean Corpus
1435
+ - type: row_sparsity_mean_corpus
1436
+ value: 0.9375
1437
+ name: Row Sparsity Mean Corpus
1438
+ - task:
1439
+ type: sparse-information-retrieval
1440
+ name: Sparse Information Retrieval
1441
+ dataset:
1442
+ name: NanoFiQA2018
1443
+ type: NanoFiQA2018
1444
+ metrics:
1445
+ - type: dot_accuracy@1
1446
+ value: 0.54
1447
+ name: Dot Accuracy@1
1448
+ - type: dot_accuracy@3
1449
+ value: 0.62
1450
+ name: Dot Accuracy@3
1451
+ - type: dot_accuracy@5
1452
+ value: 0.66
1453
+ name: Dot Accuracy@5
1454
+ - type: dot_accuracy@10
1455
+ value: 0.72
1456
+ name: Dot Accuracy@10
1457
+ - type: dot_precision@1
1458
+ value: 0.54
1459
+ name: Dot Precision@1
1460
+ - type: dot_precision@3
1461
+ value: 0.3
1462
+ name: Dot Precision@3
1463
+ - type: dot_precision@5
1464
+ value: 0.20800000000000002
1465
+ name: Dot Precision@5
1466
+ - type: dot_precision@10
1467
+ value: 0.118
1468
+ name: Dot Precision@10
1469
+ - type: dot_recall@1
1470
+ value: 0.29257936507936505
1471
+ name: Dot Recall@1
1472
+ - type: dot_recall@3
1473
+ value: 0.4266587301587301
1474
+ name: Dot Recall@3
1475
+ - type: dot_recall@5
1476
+ value: 0.47401587301587306
1477
+ name: Dot Recall@5
1478
+ - type: dot_recall@10
1479
+ value: 0.5415952380952381
1480
+ name: Dot Recall@10
1481
+ - type: dot_ndcg@10
1482
+ value: 0.49829838655315356
1483
+ name: Dot Ndcg@10
1484
+ - type: dot_mrr@10
1485
+ value: 0.599
1486
+ name: Dot Mrr@10
1487
+ - type: dot_map@100
1488
+ value: 0.45314978299438174
1489
+ name: Dot Map@100
1490
+ - type: row_non_zero_mean_query
1491
+ value: 256.0
1492
+ name: Row Non Zero Mean Query
1493
+ - type: row_sparsity_mean_query
1494
+ value: 0.9375
1495
+ name: Row Sparsity Mean Query
1496
+ - type: row_non_zero_mean_corpus
1497
+ value: 256.0
1498
+ name: Row Non Zero Mean Corpus
1499
+ - type: row_sparsity_mean_corpus
1500
+ value: 0.9375
1501
+ name: Row Sparsity Mean Corpus
1502
+ - task:
1503
+ type: sparse-information-retrieval
1504
+ name: Sparse Information Retrieval
1505
+ dataset:
1506
+ name: NanoHotpotQA
1507
+ type: NanoHotpotQA
1508
+ metrics:
1509
+ - type: dot_accuracy@1
1510
+ value: 0.84
1511
+ name: Dot Accuracy@1
1512
+ - type: dot_accuracy@3
1513
+ value: 0.96
1514
+ name: Dot Accuracy@3
1515
+ - type: dot_accuracy@5
1516
+ value: 0.98
1517
+ name: Dot Accuracy@5
1518
+ - type: dot_accuracy@10
1519
+ value: 0.98
1520
+ name: Dot Accuracy@10
1521
+ - type: dot_precision@1
1522
+ value: 0.84
1523
+ name: Dot Precision@1
1524
+ - type: dot_precision@3
1525
+ value: 0.5333333333333333
1526
+ name: Dot Precision@3
1527
+ - type: dot_precision@5
1528
+ value: 0.3439999999999999
1529
+ name: Dot Precision@5
1530
+ - type: dot_precision@10
1531
+ value: 0.17599999999999993
1532
+ name: Dot Precision@10
1533
+ - type: dot_recall@1
1534
+ value: 0.42
1535
+ name: Dot Recall@1
1536
+ - type: dot_recall@3
1537
+ value: 0.8
1538
+ name: Dot Recall@3
1539
+ - type: dot_recall@5
1540
+ value: 0.86
1541
+ name: Dot Recall@5
1542
+ - type: dot_recall@10
1543
+ value: 0.88
1544
+ name: Dot Recall@10
1545
+ - type: dot_ndcg@10
1546
+ value: 0.831808180844114
1547
+ name: Dot Ndcg@10
1548
+ - type: dot_mrr@10
1549
+ value: 0.8983333333333333
1550
+ name: Dot Mrr@10
1551
+ - type: dot_map@100
1552
+ value: 0.7782796284246765
1553
+ name: Dot Map@100
1554
+ - type: row_non_zero_mean_query
1555
+ value: 256.0
1556
+ name: Row Non Zero Mean Query
1557
+ - type: row_sparsity_mean_query
1558
+ value: 0.9375
1559
+ name: Row Sparsity Mean Query
1560
+ - type: row_non_zero_mean_corpus
1561
+ value: 256.0
1562
+ name: Row Non Zero Mean Corpus
1563
+ - type: row_sparsity_mean_corpus
1564
+ value: 0.9375
1565
+ name: Row Sparsity Mean Corpus
1566
+ - task:
1567
+ type: sparse-information-retrieval
1568
+ name: Sparse Information Retrieval
1569
+ dataset:
1570
+ name: NanoQuoraRetrieval
1571
+ type: NanoQuoraRetrieval
1572
+ metrics:
1573
+ - type: dot_accuracy@1
1574
+ value: 0.9
1575
+ name: Dot Accuracy@1
1576
+ - type: dot_accuracy@3
1577
+ value: 0.98
1578
+ name: Dot Accuracy@3
1579
+ - type: dot_accuracy@5
1580
+ value: 0.98
1581
+ name: Dot Accuracy@5
1582
+ - type: dot_accuracy@10
1583
+ value: 1.0
1584
+ name: Dot Accuracy@10
1585
+ - type: dot_precision@1
1586
+ value: 0.9
1587
+ name: Dot Precision@1
1588
+ - type: dot_precision@3
1589
+ value: 0.4133333333333333
1590
+ name: Dot Precision@3
1591
+ - type: dot_precision@5
1592
+ value: 0.25999999999999995
1593
+ name: Dot Precision@5
1594
+ - type: dot_precision@10
1595
+ value: 0.13799999999999998
1596
+ name: Dot Precision@10
1597
+ - type: dot_recall@1
1598
+ value: 0.7906666666666666
1599
+ name: Dot Recall@1
1600
+ - type: dot_recall@3
1601
+ value: 0.9520000000000001
1602
+ name: Dot Recall@3
1603
+ - type: dot_recall@5
1604
+ value: 0.966
1605
+ name: Dot Recall@5
1606
+ - type: dot_recall@10
1607
+ value: 0.9966666666666666
1608
+ name: Dot Recall@10
1609
+ - type: dot_ndcg@10
1610
+ value: 0.9495440482890076
1611
+ name: Dot Ndcg@10
1612
+ - type: dot_mrr@10
1613
+ value: 0.94
1614
+ name: Dot Mrr@10
1615
+ - type: dot_map@100
1616
+ value: 0.9292555555555555
1617
+ name: Dot Map@100
1618
+ - type: row_non_zero_mean_query
1619
+ value: 256.0
1620
+ name: Row Non Zero Mean Query
1621
+ - type: row_sparsity_mean_query
1622
+ value: 0.9375
1623
+ name: Row Sparsity Mean Query
1624
+ - type: row_non_zero_mean_corpus
1625
+ value: 256.0
1626
+ name: Row Non Zero Mean Corpus
1627
+ - type: row_sparsity_mean_corpus
1628
+ value: 0.9375
1629
+ name: Row Sparsity Mean Corpus
1630
+ - task:
1631
+ type: sparse-information-retrieval
1632
+ name: Sparse Information Retrieval
1633
+ dataset:
1634
+ name: NanoSCIDOCS
1635
+ type: NanoSCIDOCS
1636
+ metrics:
1637
+ - type: dot_accuracy@1
1638
+ value: 0.5
1639
+ name: Dot Accuracy@1
1640
+ - type: dot_accuracy@3
1641
+ value: 0.66
1642
+ name: Dot Accuracy@3
1643
+ - type: dot_accuracy@5
1644
+ value: 0.76
1645
+ name: Dot Accuracy@5
1646
+ - type: dot_accuracy@10
1647
+ value: 0.84
1648
+ name: Dot Accuracy@10
1649
+ - type: dot_precision@1
1650
+ value: 0.5
1651
+ name: Dot Precision@1
1652
+ - type: dot_precision@3
1653
+ value: 0.33333333333333326
1654
+ name: Dot Precision@3
1655
+ - type: dot_precision@5
1656
+ value: 0.29200000000000004
1657
+ name: Dot Precision@5
1658
+ - type: dot_precision@10
1659
+ value: 0.20400000000000001
1660
+ name: Dot Precision@10
1661
+ - type: dot_recall@1
1662
+ value: 0.10666666666666667
1663
+ name: Dot Recall@1
1664
+ - type: dot_recall@3
1665
+ value: 0.2096666666666667
1666
+ name: Dot Recall@3
1667
+ - type: dot_recall@5
1668
+ value: 0.3016666666666667
1669
+ name: Dot Recall@5
1670
+ - type: dot_recall@10
1671
+ value: 0.4186666666666667
1672
+ name: Dot Recall@10
1673
+ - type: dot_ndcg@10
1674
+ value: 0.4055677447150387
1675
+ name: Dot Ndcg@10
1676
+ - type: dot_mrr@10
1677
+ value: 0.6097142857142857
1678
+ name: Dot Mrr@10
1679
+ - type: dot_map@100
1680
+ value: 0.3297751386475111
1681
+ name: Dot Map@100
1682
+ - type: row_non_zero_mean_query
1683
+ value: 256.0
1684
+ name: Row Non Zero Mean Query
1685
+ - type: row_sparsity_mean_query
1686
+ value: 0.9375
1687
+ name: Row Sparsity Mean Query
1688
+ - type: row_non_zero_mean_corpus
1689
+ value: 256.0
1690
+ name: Row Non Zero Mean Corpus
1691
+ - type: row_sparsity_mean_corpus
1692
+ value: 0.9375
1693
+ name: Row Sparsity Mean Corpus
1694
+ - task:
1695
+ type: sparse-information-retrieval
1696
+ name: Sparse Information Retrieval
1697
+ dataset:
1698
+ name: NanoArguAna
1699
+ type: NanoArguAna
1700
+ metrics:
1701
+ - type: dot_accuracy@1
1702
+ value: 0.34
1703
+ name: Dot Accuracy@1
1704
+ - type: dot_accuracy@3
1705
+ value: 0.78
1706
+ name: Dot Accuracy@3
1707
+ - type: dot_accuracy@5
1708
+ value: 0.86
1709
+ name: Dot Accuracy@5
1710
+ - type: dot_accuracy@10
1711
+ value: 0.98
1712
+ name: Dot Accuracy@10
1713
+ - type: dot_precision@1
1714
+ value: 0.34
1715
+ name: Dot Precision@1
1716
+ - type: dot_precision@3
1717
+ value: 0.26
1718
+ name: Dot Precision@3
1719
+ - type: dot_precision@5
1720
+ value: 0.17199999999999996
1721
+ name: Dot Precision@5
1722
+ - type: dot_precision@10
1723
+ value: 0.09799999999999998
1724
+ name: Dot Precision@10
1725
+ - type: dot_recall@1
1726
+ value: 0.34
1727
+ name: Dot Recall@1
1728
+ - type: dot_recall@3
1729
+ value: 0.78
1730
+ name: Dot Recall@3
1731
+ - type: dot_recall@5
1732
+ value: 0.86
1733
+ name: Dot Recall@5
1734
+ - type: dot_recall@10
1735
+ value: 0.98
1736
+ name: Dot Recall@10
1737
+ - type: dot_ndcg@10
1738
+ value: 0.6735247359369816
1739
+ name: Dot Ndcg@10
1740
+ - type: dot_mrr@10
1741
+ value: 0.574126984126984
1742
+ name: Dot Mrr@10
1743
+ - type: dot_map@100
1744
+ value: 0.5746532999164579
1745
+ name: Dot Map@100
1746
+ - type: row_non_zero_mean_query
1747
+ value: 256.0
1748
+ name: Row Non Zero Mean Query
1749
+ - type: row_sparsity_mean_query
1750
+ value: 0.9375
1751
+ name: Row Sparsity Mean Query
1752
+ - type: row_non_zero_mean_corpus
1753
+ value: 256.0
1754
+ name: Row Non Zero Mean Corpus
1755
+ - type: row_sparsity_mean_corpus
1756
+ value: 0.9375
1757
+ name: Row Sparsity Mean Corpus
1758
+ - task:
1759
+ type: sparse-information-retrieval
1760
+ name: Sparse Information Retrieval
1761
+ dataset:
1762
+ name: NanoSciFact
1763
+ type: NanoSciFact
1764
+ metrics:
1765
+ - type: dot_accuracy@1
1766
+ value: 0.58
1767
+ name: Dot Accuracy@1
1768
+ - type: dot_accuracy@3
1769
+ value: 0.68
1770
+ name: Dot Accuracy@3
1771
+ - type: dot_accuracy@5
1772
+ value: 0.76
1773
+ name: Dot Accuracy@5
1774
+ - type: dot_accuracy@10
1775
+ value: 0.84
1776
+ name: Dot Accuracy@10
1777
+ - type: dot_precision@1
1778
+ value: 0.58
1779
+ name: Dot Precision@1
1780
+ - type: dot_precision@3
1781
+ value: 0.24
1782
+ name: Dot Precision@3
1783
+ - type: dot_precision@5
1784
+ value: 0.16399999999999998
1785
+ name: Dot Precision@5
1786
+ - type: dot_precision@10
1787
+ value: 0.09599999999999997
1788
+ name: Dot Precision@10
1789
+ - type: dot_recall@1
1790
+ value: 0.555
1791
+ name: Dot Recall@1
1792
+ - type: dot_recall@3
1793
+ value: 0.67
1794
+ name: Dot Recall@3
1795
+ - type: dot_recall@5
1796
+ value: 0.745
1797
+ name: Dot Recall@5
1798
+ - type: dot_recall@10
1799
+ value: 0.84
1800
+ name: Dot Recall@10
1801
+ - type: dot_ndcg@10
1802
+ value: 0.6982128840882104
1803
+ name: Dot Ndcg@10
1804
+ - type: dot_mrr@10
1805
+ value: 0.6553015873015873
1806
+ name: Dot Mrr@10
1807
+ - type: dot_map@100
1808
+ value: 0.6562051918669566
1809
+ name: Dot Map@100
1810
+ - type: row_non_zero_mean_query
1811
+ value: 256.0
1812
+ name: Row Non Zero Mean Query
1813
+ - type: row_sparsity_mean_query
1814
+ value: 0.9375
1815
+ name: Row Sparsity Mean Query
1816
+ - type: row_non_zero_mean_corpus
1817
+ value: 256.0
1818
+ name: Row Non Zero Mean Corpus
1819
+ - type: row_sparsity_mean_corpus
1820
+ value: 0.9375
1821
+ name: Row Sparsity Mean Corpus
1822
+ - task:
1823
+ type: sparse-information-retrieval
1824
+ name: Sparse Information Retrieval
1825
+ dataset:
1826
+ name: NanoTouche2020
1827
+ type: NanoTouche2020
1828
+ metrics:
1829
+ - type: dot_accuracy@1
1830
+ value: 0.5510204081632653
1831
+ name: Dot Accuracy@1
1832
+ - type: dot_accuracy@3
1833
+ value: 0.8163265306122449
1834
+ name: Dot Accuracy@3
1835
+ - type: dot_accuracy@5
1836
+ value: 0.8979591836734694
1837
+ name: Dot Accuracy@5
1838
+ - type: dot_accuracy@10
1839
+ value: 0.9795918367346939
1840
+ name: Dot Accuracy@10
1841
+ - type: dot_precision@1
1842
+ value: 0.5510204081632653
1843
+ name: Dot Precision@1
1844
+ - type: dot_precision@3
1845
+ value: 0.5034013605442177
1846
+ name: Dot Precision@3
1847
+ - type: dot_precision@5
1848
+ value: 0.4816326530612246
1849
+ name: Dot Precision@5
1850
+ - type: dot_precision@10
1851
+ value: 0.4224489795918367
1852
+ name: Dot Precision@10
1853
+ - type: dot_recall@1
1854
+ value: 0.03711095639538641
1855
+ name: Dot Recall@1
1856
+ - type: dot_recall@3
1857
+ value: 0.10760163972336141
1858
+ name: Dot Recall@3
1859
+ - type: dot_recall@5
1860
+ value: 0.16469834844278258
1861
+ name: Dot Recall@5
1862
+ - type: dot_recall@10
1863
+ value: 0.2738798061064456
1864
+ name: Dot Recall@10
1865
+ - type: dot_ndcg@10
1866
+ value: 0.4645323957761827
1867
+ name: Dot Ndcg@10
1868
+ - type: dot_mrr@10
1869
+ value: 0.6913508260447035
1870
+ name: Dot Mrr@10
1871
+ - type: dot_map@100
1872
+ value: 0.3401603339662621
1873
+ name: Dot Map@100
1874
+ - type: row_non_zero_mean_query
1875
+ value: 256.0
1876
+ name: Row Non Zero Mean Query
1877
+ - type: row_sparsity_mean_query
1878
+ value: 0.9375
1879
+ name: Row Sparsity Mean Query
1880
+ - type: row_non_zero_mean_corpus
1881
+ value: 256.0
1882
+ name: Row Non Zero Mean Corpus
1883
+ - type: row_sparsity_mean_corpus
1884
+ value: 0.9375
1885
+ name: Row Sparsity Mean Corpus
1886
+ ---
1887
+
1888
+ # Sparse CSR model trained on Natural Questions
1889
+
1890
+ This is a [CSR Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) on the [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 4096-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
1891
+
1892
+ ## Model Details
1893
+
1894
+ ### Model Description
1895
+ - **Model Type:** CSR Sparse Encoder
1896
+ - **Base model:** [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) <!-- at revision db9d1fe0f31addb4978201b2bf3e577f3f8900d2 -->
1897
+ - **Maximum Sequence Length:** 512 tokens
1898
+ - **Output Dimensionality:** 4096 dimensions
1899
+ - **Similarity Function:** Dot Product
1900
+ - **Training Dataset:**
1901
+ - [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions)
1902
+ - **Language:** en
1903
+ - **License:** apache-2.0
1904
+
1905
+ ### Model Sources
1906
+
1907
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
1908
+ - **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
1909
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
1910
+ - **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)
1911
+
1912
+ ### Full Model Architecture
1913
+
1914
+ ```
1915
+ SparseEncoder(
1916
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
1917
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1918
+ (2): CSRSparsity({'input_dim': 1024, 'hidden_dim': 4096, 'k': 256, 'k_aux': 512, 'normalize': False, 'dead_threshold': 30})
1919
+ )
1920
+ ```
1921
+
1922
+ ## Usage
1923
+
1924
+ ### Direct Usage (Sentence Transformers)
1925
+
1926
+ First install the Sentence Transformers library:
1927
+
1928
+ ```bash
1929
+ pip install -U sentence-transformers
1930
+ ```
1931
+
1932
+ Then you can load this model and run inference.
1933
+ ```python
1934
+ from sentence_transformers import SparseEncoder
1935
+
1936
+ # Download from the 🤗 Hub
1937
+ model = SparseEncoder("tomaarsen/csr-mxbai-embed-large-v1-nq-gemma5")
1938
+ # Run inference
1939
+ sentences = [
1940
+ 'who is cornelius in the book of acts',
1941
+ 'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.',
1942
+ "Joe Ranft Ranft reunited with Lasseter when he was hired by Pixar in 1991 as their head of story.[1] There he worked on all of their films produced up to 2006; this included Toy Story (for which he received an Academy Award nomination) and A Bug's Life, as the co-story writer and others as story supervisor. His final film was Cars. He also voiced characters in many of the films, including Heimlich the caterpillar in A Bug's Life, Wheezy the penguin in Toy Story 2, and Jacques the shrimp in Finding Nemo.[1]",
1943
+ ]
1944
+ embeddings = model.encode(sentences)
1945
+ print(embeddings.shape)
1946
+ # (3, 4096)
1947
+
1948
+ # Get the similarity scores for the embeddings
1949
+ similarities = model.similarity(embeddings, embeddings)
1950
+ print(similarities.shape)
1951
+ # [3, 3]
1952
+ ```
1953
+
1954
+ <!--
1955
+ ### Direct Usage (Transformers)
1956
+
1957
+ <details><summary>Click to see the direct usage in Transformers</summary>
1958
+
1959
+ </details>
1960
+ -->
1961
+
1962
+ <!--
1963
+ ### Downstream Usage (Sentence Transformers)
1964
+
1965
+ You can finetune this model on your own dataset.
1966
+
1967
+ <details><summary>Click to expand</summary>
1968
+
1969
+ </details>
1970
+ -->
1971
+
1972
+ <!--
1973
+ ### Out-of-Scope Use
1974
+
1975
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
1976
+ -->
1977
+
1978
+ ## Evaluation
1979
+
1980
+ ### Metrics
1981
+
1982
+ #### Sparse Information Retrieval
1983
+
1984
+ * Datasets: `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoClimateFEVER`, `NanoDBPedia`, `NanoFEVER`, `NanoFiQA2018`, `NanoHotpotQA`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoQuoraRetrieval`, `NanoSCIDOCS`, `NanoArguAna`, `NanoSciFact` and `NanoTouche2020`
1985
+ * Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator)
1986
+
1987
+ | Metric | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
1988
+ |:-------------------------|:------------|:-------------|:-----------|:-----------------|:------------|:-----------|:-------------|:-------------|:-------------------|:------------|:------------|:------------|:---------------|
1989
+ | dot_accuracy@1 | 0.42 | 0.36 | 0.6 | 0.3 | 0.74 | 0.78 | 0.54 | 0.84 | 0.9 | 0.5 | 0.34 | 0.58 | 0.551 |
1990
+ | dot_accuracy@3 | 0.66 | 0.58 | 0.66 | 0.44 | 0.86 | 0.88 | 0.62 | 0.96 | 0.98 | 0.66 | 0.78 | 0.68 | 0.8163 |
1991
+ | dot_accuracy@5 | 0.76 | 0.62 | 0.76 | 0.58 | 0.9 | 0.9 | 0.66 | 0.98 | 0.98 | 0.76 | 0.86 | 0.76 | 0.898 |
1992
+ | dot_accuracy@10 | 0.82 | 0.68 | 0.8 | 0.66 | 0.94 | 0.94 | 0.72 | 0.98 | 1.0 | 0.84 | 0.98 | 0.84 | 0.9796 |
1993
+ | dot_precision@1 | 0.42 | 0.36 | 0.6 | 0.3 | 0.74 | 0.78 | 0.54 | 0.84 | 0.9 | 0.5 | 0.34 | 0.58 | 0.551 |
1994
+ | dot_precision@3 | 0.22 | 0.34 | 0.2267 | 0.1733 | 0.64 | 0.3067 | 0.3 | 0.5333 | 0.4133 | 0.3333 | 0.26 | 0.24 | 0.5034 |
1995
+ | dot_precision@5 | 0.152 | 0.304 | 0.156 | 0.152 | 0.56 | 0.188 | 0.208 | 0.344 | 0.26 | 0.292 | 0.172 | 0.164 | 0.4816 |
1996
+ | dot_precision@10 | 0.082 | 0.25 | 0.084 | 0.096 | 0.454 | 0.098 | 0.118 | 0.176 | 0.138 | 0.204 | 0.098 | 0.096 | 0.4224 |
1997
+ | dot_recall@1 | 0.42 | 0.0442 | 0.57 | 0.1467 | 0.0792 | 0.7267 | 0.2926 | 0.42 | 0.7907 | 0.1067 | 0.34 | 0.555 | 0.0371 |
1998
+ | dot_recall@3 | 0.66 | 0.0768 | 0.63 | 0.24 | 0.1735 | 0.8467 | 0.4267 | 0.8 | 0.952 | 0.2097 | 0.78 | 0.67 | 0.1076 |
1999
+ | dot_recall@5 | 0.76 | 0.0903 | 0.72 | 0.3167 | 0.2409 | 0.8667 | 0.474 | 0.86 | 0.966 | 0.3017 | 0.86 | 0.745 | 0.1647 |
2000
+ | dot_recall@10 | 0.82 | 0.1281 | 0.76 | 0.379 | 0.3511 | 0.9067 | 0.5416 | 0.88 | 0.9967 | 0.4187 | 0.98 | 0.84 | 0.2739 |
2001
+ | **dot_ndcg@10** | **0.623** | **0.3059** | **0.6666** | **0.3189** | **0.5897** | **0.8325** | **0.4983** | **0.8318** | **0.9495** | **0.4056** | **0.6735** | **0.6982** | **0.4645** |
2002
+ | dot_mrr@10 | 0.5596 | 0.4729 | 0.6562 | 0.4042 | 0.8142 | 0.8367 | 0.599 | 0.8983 | 0.94 | 0.6097 | 0.5741 | 0.6553 | 0.6914 |
2003
+ | dot_map@100 | 0.5681 | 0.1495 | 0.6392 | 0.2605 | 0.4387 | 0.8013 | 0.4531 | 0.7783 | 0.9293 | 0.3298 | 0.5747 | 0.6562 | 0.3402 |
2004
+ | row_non_zero_mean_query | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 |
2005
+ | row_sparsity_mean_query | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 |
2006
+ | row_non_zero_mean_corpus | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 |
2007
+ | row_sparsity_mean_corpus | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 |
2008
+
2009
+ #### Sparse Nano BEIR
2010
+
2011
+ * Dataset: `NanoBEIR_mean`
2012
+ * Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
2013
+ ```json
2014
+ {
2015
+ "dataset_names": [
2016
+ "msmarco",
2017
+ "nfcorpus",
2018
+ "nq"
2019
+ ]
2020
+ }
2021
+ ```
2022
+
2023
+ | Metric | Value |
2024
+ |:-------------------------|:-----------|
2025
+ | dot_accuracy@1 | 0.2733 |
2026
+ | dot_accuracy@3 | 0.4467 |
2027
+ | dot_accuracy@5 | 0.52 |
2028
+ | dot_accuracy@10 | 0.6267 |
2029
+ | dot_precision@1 | 0.2733 |
2030
+ | dot_precision@3 | 0.1822 |
2031
+ | dot_precision@5 | 0.148 |
2032
+ | dot_precision@10 | 0.1007 |
2033
+ | dot_recall@1 | 0.1916 |
2034
+ | dot_recall@3 | 0.3001 |
2035
+ | dot_recall@5 | 0.3474 |
2036
+ | dot_recall@10 | 0.4479 |
2037
+ | **dot_ndcg@10** | **0.3651** |
2038
+ | dot_mrr@10 | 0.3779 |
2039
+ | dot_map@100 | 0.2884 |
2040
+ | row_non_zero_mean_query | 32.0 |
2041
+ | row_sparsity_mean_query | 0.9922 |
2042
+ | row_non_zero_mean_corpus | 32.0 |
2043
+ | row_sparsity_mean_corpus | 0.9922 |
2044
+
2045
+ #### Sparse Nano BEIR
2046
+
2047
+ * Dataset: `NanoBEIR_mean`
2048
+ * Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
2049
+ ```json
2050
+ {
2051
+ "dataset_names": [
2052
+ "msmarco",
2053
+ "nfcorpus",
2054
+ "nq"
2055
+ ]
2056
+ }
2057
+ ```
2058
+
2059
+ | Metric | Value |
2060
+ |:-------------------------|:-----------|
2061
+ | dot_accuracy@1 | 0.3533 |
2062
+ | dot_accuracy@3 | 0.4867 |
2063
+ | dot_accuracy@5 | 0.64 |
2064
+ | dot_accuracy@10 | 0.7267 |
2065
+ | dot_precision@1 | 0.3533 |
2066
+ | dot_precision@3 | 0.2022 |
2067
+ | dot_precision@5 | 0.1813 |
2068
+ | dot_precision@10 | 0.12 |
2069
+ | dot_recall@1 | 0.2598 |
2070
+ | dot_recall@3 | 0.3582 |
2071
+ | dot_recall@5 | 0.4801 |
2072
+ | dot_recall@10 | 0.5459 |
2073
+ | **dot_ndcg@10** | **0.4541** |
2074
+ | dot_mrr@10 | 0.4588 |
2075
+ | dot_map@100 | 0.3673 |
2076
+ | row_non_zero_mean_query | 64.0 |
2077
+ | row_sparsity_mean_query | 0.9844 |
2078
+ | row_non_zero_mean_corpus | 64.0 |
2079
+ | row_sparsity_mean_corpus | 0.9844 |
2080
+
2081
+ #### Sparse Nano BEIR
2082
+
2083
+ * Dataset: `NanoBEIR_mean`
2084
+ * Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
2085
+ ```json
2086
+ {
2087
+ "dataset_names": [
2088
+ "msmarco",
2089
+ "nfcorpus",
2090
+ "nq"
2091
+ ]
2092
+ }
2093
+ ```
2094
+
2095
+ | Metric | Value |
2096
+ |:-------------------------|:-----------|
2097
+ | dot_accuracy@1 | 0.42 |
2098
+ | dot_accuracy@3 | 0.6133 |
2099
+ | dot_accuracy@5 | 0.6867 |
2100
+ | dot_accuracy@10 | 0.7667 |
2101
+ | dot_precision@1 | 0.42 |
2102
+ | dot_precision@3 | 0.2556 |
2103
+ | dot_precision@5 | 0.1973 |
2104
+ | dot_precision@10 | 0.1353 |
2105
+ | dot_recall@1 | 0.2939 |
2106
+ | dot_recall@3 | 0.4377 |
2107
+ | dot_recall@5 | 0.4927 |
2108
+ | dot_recall@10 | 0.5705 |
2109
+ | **dot_ndcg@10** | **0.5051** |
2110
+ | dot_mrr@10 | 0.5339 |
2111
+ | dot_map@100 | 0.4102 |
2112
+ | row_non_zero_mean_query | 128.0 |
2113
+ | row_sparsity_mean_query | 0.9688 |
2114
+ | row_non_zero_mean_corpus | 128.0 |
2115
+ | row_sparsity_mean_corpus | 0.9688 |
2116
+
2117
+ #### Sparse Nano BEIR
2118
+
2119
+ * Dataset: `NanoBEIR_mean`
2120
+ * Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
2121
+ ```json
2122
+ {
2123
+ "dataset_names": [
2124
+ "msmarco",
2125
+ "nfcorpus",
2126
+ "nq"
2127
+ ]
2128
+ }
2129
+ ```
2130
+
2131
+ | Metric | Value |
2132
+ |:-------------------------|:-----------|
2133
+ | dot_accuracy@1 | 0.44 |
2134
+ | dot_accuracy@3 | 0.6333 |
2135
+ | dot_accuracy@5 | 0.7 |
2136
+ | dot_accuracy@10 | 0.7733 |
2137
+ | dot_precision@1 | 0.44 |
2138
+ | dot_precision@3 | 0.2667 |
2139
+ | dot_precision@5 | 0.2 |
2140
+ | dot_precision@10 | 0.1393 |
2141
+ | dot_recall@1 | 0.3182 |
2142
+ | dot_recall@3 | 0.463 |
2143
+ | dot_recall@5 | 0.51 |
2144
+ | dot_recall@10 | 0.5744 |
2145
+ | **dot_ndcg@10** | **0.5235** |
2146
+ | dot_mrr@10 | 0.5504 |
2147
+ | dot_map@100 | 0.439 |
2148
+ | row_non_zero_mean_query | 256.0 |
2149
+ | row_sparsity_mean_query | 0.9375 |
2150
+ | row_non_zero_mean_corpus | 256.0 |
2151
+ | row_sparsity_mean_corpus | 0.9375 |
2152
+
2153
+ #### Sparse Nano BEIR
2154
+
2155
+ * Dataset: `NanoBEIR_mean`
2156
+ * Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
2157
+ ```json
2158
+ {
2159
+ "dataset_names": [
2160
+ "climatefever",
2161
+ "dbpedia",
2162
+ "fever",
2163
+ "fiqa2018",
2164
+ "hotpotqa",
2165
+ "msmarco",
2166
+ "nfcorpus",
2167
+ "nq",
2168
+ "quoraretrieval",
2169
+ "scidocs",
2170
+ "arguana",
2171
+ "scifact",
2172
+ "touche2020"
2173
+ ]
2174
+ }
2175
+ ```
2176
+
2177
+ | Metric | Value |
2178
+ |:-------------------------|:-----------|
2179
+ | dot_accuracy@1 | 0.5732 |
2180
+ | dot_accuracy@3 | 0.7366 |
2181
+ | dot_accuracy@5 | 0.8014 |
2182
+ | dot_accuracy@10 | 0.86 |
2183
+ | dot_precision@1 | 0.5732 |
2184
+ | dot_precision@3 | 0.3454 |
2185
+ | dot_precision@5 | 0.2641 |
2186
+ | dot_precision@10 | 0.1782 |
2187
+ | dot_recall@1 | 0.3484 |
2188
+ | dot_recall@3 | 0.5056 |
2189
+ | dot_recall@5 | 0.5666 |
2190
+ | dot_recall@10 | 0.6366 |
2191
+ | **dot_ndcg@10** | **0.6045** |
2192
+ | dot_mrr@10 | 0.6701 |
2193
+ | dot_map@100 | 0.5322 |
2194
+ | row_non_zero_mean_query | 256.0 |
2195
+ | row_sparsity_mean_query | 0.9375 |
2196
+ | row_non_zero_mean_corpus | 256.0 |
2197
+ | row_sparsity_mean_corpus | 0.9375 |
2198
+
2199
+ <!--
2200
+ ## Bias, Risks and Limitations
2201
+
2202
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
2203
+ -->
2204
+
2205
+ <!--
2206
+ ### Recommendations
2207
+
2208
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
2209
+ -->
2210
+
2211
+ ## Training Details
2212
+
2213
+ ### Training Dataset
2214
+
2215
+ #### natural-questions
2216
+
2217
+ * Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
2218
+ * Size: 99,000 training samples
2219
+ * Columns: <code>query</code> and <code>answer</code>
2220
+ * Approximate statistics based on the first 1000 samples:
2221
+ | | query | answer |
2222
+ |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
2223
+ | type | string | string |
2224
+ | details | <ul><li>min: 10 tokens</li><li>mean: 11.71 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 131.81 tokens</li><li>max: 450 tokens</li></ul> |
2225
+ * Samples:
2226
+ | query | answer |
2227
+ |:--------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
2228
+ | <code>who played the father in papa don't preach</code> | <code>Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.</code> |
2229
+ | <code>where was the location of the battle of hastings</code> | <code>Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.</code> |
2230
+ | <code>how many puppies can a dog give birth to</code> | <code>Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]</code> |
2231
+ * Loss: [<code>CSRLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#csrloss) with these parameters:
2232
+ ```json
2233
+ {
2234
+ "beta": 0.1,
2235
+ "gamma": 5,
2236
+ "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')"
2237
+ }
2238
+ ```
2239
+
2240
+ ### Evaluation Dataset
2241
+
2242
+ #### natural-questions
2243
+
2244
+ * Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
2245
+ * Size: 1,000 evaluation samples
2246
+ * Columns: <code>query</code> and <code>answer</code>
2247
+ * Approximate statistics based on the first 1000 samples:
2248
+ | | query | answer |
2249
+ |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
2250
+ | type | string | string |
2251
+ | details | <ul><li>min: 10 tokens</li><li>mean: 11.69 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 134.01 tokens</li><li>max: 512 tokens</li></ul> |
2252
+ * Samples:
2253
+ | query | answer |
2254
+ |:-------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
2255
+ | <code>where is the tiber river located in italy</code> | <code>Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.</code> |
2256
+ | <code>what kind of car does jay gatsby drive</code> | <code>Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.</code> |
2257
+ | <code>who sings if i can dream about you</code> | <code>I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]</code> |
2258
+ * Loss: [<code>CSRLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#csrloss) with these parameters:
2259
+ ```json
2260
+ {
2261
+ "beta": 0.1,
2262
+ "gamma": 5,
2263
+ "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')"
2264
+ }
2265
+ ```
2266
+
2267
+ ### Training Hyperparameters
2268
+ #### Non-Default Hyperparameters
2269
+
2270
+ - `eval_strategy`: steps
2271
+ - `per_device_train_batch_size`: 64
2272
+ - `per_device_eval_batch_size`: 64
2273
+ - `learning_rate`: 4e-05
2274
+ - `num_train_epochs`: 1
2275
+ - `bf16`: True
2276
+ - `load_best_model_at_end`: True
2277
+ - `batch_sampler`: no_duplicates
2278
+
2279
+ #### All Hyperparameters
2280
+ <details><summary>Click to expand</summary>
2281
+
2282
+ - `overwrite_output_dir`: False
2283
+ - `do_predict`: False
2284
+ - `eval_strategy`: steps
2285
+ - `prediction_loss_only`: True
2286
+ - `per_device_train_batch_size`: 64
2287
+ - `per_device_eval_batch_size`: 64
2288
+ - `per_gpu_train_batch_size`: None
2289
+ - `per_gpu_eval_batch_size`: None
2290
+ - `gradient_accumulation_steps`: 1
2291
+ - `eval_accumulation_steps`: None
2292
+ - `torch_empty_cache_steps`: None
2293
+ - `learning_rate`: 4e-05
2294
+ - `weight_decay`: 0.0
2295
+ - `adam_beta1`: 0.9
2296
+ - `adam_beta2`: 0.999
2297
+ - `adam_epsilon`: 1e-08
2298
+ - `max_grad_norm`: 1.0
2299
+ - `num_train_epochs`: 1
2300
+ - `max_steps`: -1
2301
+ - `lr_scheduler_type`: linear
2302
+ - `lr_scheduler_kwargs`: {}
2303
+ - `warmup_ratio`: 0.0
2304
+ - `warmup_steps`: 0
2305
+ - `log_level`: passive
2306
+ - `log_level_replica`: warning
2307
+ - `log_on_each_node`: True
2308
+ - `logging_nan_inf_filter`: True
2309
+ - `save_safetensors`: True
2310
+ - `save_on_each_node`: False
2311
+ - `save_only_model`: False
2312
+ - `restore_callback_states_from_checkpoint`: False
2313
+ - `no_cuda`: False
2314
+ - `use_cpu`: False
2315
+ - `use_mps_device`: False
2316
+ - `seed`: 42
2317
+ - `data_seed`: None
2318
+ - `jit_mode_eval`: False
2319
+ - `use_ipex`: False
2320
+ - `bf16`: True
2321
+ - `fp16`: False
2322
+ - `fp16_opt_level`: O1
2323
+ - `half_precision_backend`: auto
2324
+ - `bf16_full_eval`: False
2325
+ - `fp16_full_eval`: False
2326
+ - `tf32`: None
2327
+ - `local_rank`: 0
2328
+ - `ddp_backend`: None
2329
+ - `tpu_num_cores`: None
2330
+ - `tpu_metrics_debug`: False
2331
+ - `debug`: []
2332
+ - `dataloader_drop_last`: False
2333
+ - `dataloader_num_workers`: 0
2334
+ - `dataloader_prefetch_factor`: None
2335
+ - `past_index`: -1
2336
+ - `disable_tqdm`: False
2337
+ - `remove_unused_columns`: True
2338
+ - `label_names`: None
2339
+ - `load_best_model_at_end`: True
2340
+ - `ignore_data_skip`: False
2341
+ - `fsdp`: []
2342
+ - `fsdp_min_num_params`: 0
2343
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
2344
+ - `fsdp_transformer_layer_cls_to_wrap`: None
2345
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
2346
+ - `deepspeed`: None
2347
+ - `label_smoothing_factor`: 0.0
2348
+ - `optim`: adamw_torch
2349
+ - `optim_args`: None
2350
+ - `adafactor`: False
2351
+ - `group_by_length`: False
2352
+ - `length_column_name`: length
2353
+ - `ddp_find_unused_parameters`: None
2354
+ - `ddp_bucket_cap_mb`: None
2355
+ - `ddp_broadcast_buffers`: False
2356
+ - `dataloader_pin_memory`: True
2357
+ - `dataloader_persistent_workers`: False
2358
+ - `skip_memory_metrics`: True
2359
+ - `use_legacy_prediction_loop`: False
2360
+ - `push_to_hub`: False
2361
+ - `resume_from_checkpoint`: None
2362
+ - `hub_model_id`: None
2363
+ - `hub_strategy`: every_save
2364
+ - `hub_private_repo`: None
2365
+ - `hub_always_push`: False
2366
+ - `gradient_checkpointing`: False
2367
+ - `gradient_checkpointing_kwargs`: None
2368
+ - `include_inputs_for_metrics`: False
2369
+ - `include_for_metrics`: []
2370
+ - `eval_do_concat_batches`: True
2371
+ - `fp16_backend`: auto
2372
+ - `push_to_hub_model_id`: None
2373
+ - `push_to_hub_organization`: None
2374
+ - `mp_parameters`:
2375
+ - `auto_find_batch_size`: False
2376
+ - `full_determinism`: False
2377
+ - `torchdynamo`: None
2378
+ - `ray_scope`: last
2379
+ - `ddp_timeout`: 1800
2380
+ - `torch_compile`: False
2381
+ - `torch_compile_backend`: None
2382
+ - `torch_compile_mode`: None
2383
+ - `dispatch_batches`: None
2384
+ - `split_batches`: None
2385
+ - `include_tokens_per_second`: False
2386
+ - `include_num_input_tokens_seen`: False
2387
+ - `neftune_noise_alpha`: None
2388
+ - `optim_target_modules`: None
2389
+ - `batch_eval_metrics`: False
2390
+ - `eval_on_start`: False
2391
+ - `use_liger_kernel`: False
2392
+ - `eval_use_gather_object`: False
2393
+ - `average_tokens_across_devices`: False
2394
+ - `prompts`: None
2395
+ - `batch_sampler`: no_duplicates
2396
+ - `multi_dataset_batch_sampler`: proportional
2397
+
2398
+ </details>
2399
+
2400
+ ### Training Logs
2401
+ | Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 | NanoClimateFEVER_dot_ndcg@10 | NanoDBPedia_dot_ndcg@10 | NanoFEVER_dot_ndcg@10 | NanoFiQA2018_dot_ndcg@10 | NanoHotpotQA_dot_ndcg@10 | NanoQuoraRetrieval_dot_ndcg@10 | NanoSCIDOCS_dot_ndcg@10 | NanoArguAna_dot_ndcg@10 | NanoSciFact_dot_ndcg@10 | NanoTouche2020_dot_ndcg@10 |
2402
+ |:----------:|:-------:|:-------------:|:---------------:|:-----------------------:|:------------------------:|:------------------:|:-------------------------:|:----------------------------:|:-----------------------:|:---------------------:|:------------------------:|:------------------------:|:------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:--------------------------:|
2403
+ | 0.0646 | 100 | 0.599 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2404
+ | 0.1293 | 200 | 0.69 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2405
+ | 0.1939 | 300 | 0.61 | 0.6100 | 0.6357 | 0.2858 | 0.6522 | 0.5246 | - | - | - | - | - | - | - | - | - | - |
2406
+ | 0.2586 | 400 | 0.7066 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2407
+ | 0.3232 | 500 | 0.6641 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2408
+ | 0.3878 | 600 | 0.7556 | 0.5275 | 0.6150 | 0.3067 | 0.6487 | 0.5235 | - | - | - | - | - | - | - | - | - | - |
2409
+ | 0.4525 | 700 | 0.664 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2410
+ | 0.5171 | 800 | 0.5407 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2411
+ | **0.5818** | **900** | **0.63** | **0.4654** | **0.623** | **0.3055** | **0.6666** | **0.5317** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** | **-** |
2412
+ | 0.6464 | 1000 | 0.5951 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2413
+ | 0.7111 | 1100 | 0.6147 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2414
+ | 0.7757 | 1200 | 0.7111 | 0.5087 | 0.6125 | 0.3061 | 0.6757 | 0.5314 | - | - | - | - | - | - | - | - | - | - |
2415
+ | 0.8403 | 1300 | 0.6415 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2416
+ | 0.9050 | 1400 | 0.592 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2417
+ | 0.9696 | 1500 | 0.5953 | 0.5013 | 0.6054 | 0.3076 | 0.6573 | 0.5235 | - | - | - | - | - | - | - | - | - | - |
2418
+ | -1 | -1 | - | - | 0.6230 | 0.3059 | 0.6666 | 0.6045 | 0.3189 | 0.5897 | 0.8325 | 0.4983 | 0.8318 | 0.9495 | 0.4056 | 0.6735 | 0.6982 | 0.4645 |
2419
+
2420
+ * The bold row denotes the saved checkpoint.
2421
+
2422
+ ### Environmental Impact
2423
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
2424
+ - **Energy Consumed**: 0.188 kWh
2425
+ - **Carbon Emitted**: 0.073 kg of CO2
2426
+ - **Hours Used**: 0.525 hours
2427
+
2428
+ ### Training Hardware
2429
+ - **On Cloud**: No
2430
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
2431
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
2432
+ - **RAM Size**: 31.78 GB
2433
+
2434
+ ### Framework Versions
2435
+ - Python: 3.11.6
2436
+ - Sentence Transformers: 4.2.0.dev0
2437
+ - Transformers: 4.49.0
2438
+ - PyTorch: 2.6.0+cu124
2439
+ - Accelerate: 1.5.1
2440
+ - Datasets: 2.21.0
2441
+ - Tokenizers: 0.21.1
2442
+
2443
+ ## Citation
2444
+
2445
+ ### BibTeX
2446
+
2447
+ #### Sentence Transformers
2448
+ ```bibtex
2449
+ @inproceedings{reimers-2019-sentence-bert,
2450
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
2451
+ author = "Reimers, Nils and Gurevych, Iryna",
2452
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
2453
+ month = "11",
2454
+ year = "2019",
2455
+ publisher = "Association for Computational Linguistics",
2456
+ url = "https://arxiv.org/abs/1908.10084",
2457
+ }
2458
+ ```
2459
+
2460
+ #### CSRLoss
2461
+ ```bibtex
2462
+ @misc{wen2025matryoshkarevisitingsparsecoding,
2463
+ title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation},
2464
+ author={Tiansheng Wen and Yifei Wang and Zequn Zeng and Zhong Peng and Yudi Su and Xinyang Liu and Bo Chen and Hongwei Liu and Stefanie Jegelka and Chenyu You},
2465
+ year={2025},
2466
+ eprint={2503.01776},
2467
+ archivePrefix={arXiv},
2468
+ primaryClass={cs.LG},
2469
+ url={https://arxiv.org/abs/2503.01776},
2470
+ }
2471
+ ```
2472
+
2473
+ #### SparseMultipleNegativesRankingLoss
2474
+ ```bibtex
2475
+ @misc{henderson2017efficient,
2476
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
2477
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
2478
+ year={2017},
2479
+ eprint={1705.00652},
2480
+ archivePrefix={arXiv},
2481
+ primaryClass={cs.CL}
2482
+ }
2483
+ ```
2484
+
2485
+ <!--
2486
+ ## Glossary
2487
+
2488
+ *Clearly define terms in order to be accessible across audiences.*
2489
+ -->
2490
+
2491
+ <!--
2492
+ ## Model Card Authors
2493
+
2494
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
2495
+ -->
2496
+
2497
+ <!--
2498
+ ## Model Card Contact
2499
+
2500
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
2501
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mixedbread-ai/mxbai-embed-large-v1",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 4096,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 16,
18
+ "num_hidden_layers": 24,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.49.0",
23
+ "type_vocab_size": 2,
24
+ "use_cache": false,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.2.0.dev0",
4
+ "transformers": "4.49.0",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {
8
+ "query": "Represent this sentence for searching relevant passages: ",
9
+ "passage": ""
10
+ },
11
+ "default_prompt_name": null,
12
+ "model_type": "SparseEncoder",
13
+ "similarity_fn_name": "dot"
14
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e86b2a89f7f8933cf7bd90586cdf69d0012140e412818234b234f807e51ee574
3
+ size 1340612432
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_CSRSparsity",
18
+ "type": "sentence_transformers.sparse_encoder.models.CSRSparsity"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff