tomaarsen's picture
tomaarsen HF Staff
Add new SparseEncoder model
fc80138 verified
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - sparse-encoder
  - sparse
  - csr
  - generated_from_trainer
  - dataset_size:99000
  - loss:CSRLoss
  - loss:SparseMultipleNegativesRankingLoss
base_model: mixedbread-ai/mxbai-embed-large-v1
widget:
  - text: >-
      Saudi Arabia–United Arab Emirates relations However, the UAE and Saudi
      Arabia continue to take somewhat differing stances on regional conflicts
      such the Yemeni Civil War, where the UAE opposes Al-Islah, and supports
      the Southern Movement, which has fought against Saudi-backed forces, and
      the Syrian Civil War, where the UAE has disagreed with Saudi support for
      Islamist movements.[4]
  - text: >-
      Economy of New Zealand New Zealand's diverse market economy has a sizable
      service sector, accounting for 63% of all GDP activity in 2013.[17] Large
      scale manufacturing industries include aluminium production, food
      processing, metal fabrication, wood and paper products. Mining,
      manufacturing, electricity, gas, water, and waste services accounted for
      16.5% of GDP in 2013.[17] The primary sector continues to dominate New
      Zealand's exports, despite accounting for 6.5% of GDP in 2013.[17]
  - text: >-
      who was the first president of indian science congress meeting held in
      kolkata in 1914
  - text: >-
      Get Over It (Eagles song) "Get Over It" is a song by the Eagles released
      as a single after a fourteen-year breakup. It was also the first song
      written by bandmates Don Henley and Glenn Frey when the band reunited.
      "Get Over It" was played live for the first time during their Hell Freezes
      Over tour in 1994. It returned the band to the U.S. Top 40 after a
      fourteen-year absence, peaking at No. 31 on the Billboard Hot 100 chart.
      It also hit No. 4 on the Billboard Mainstream Rock Tracks chart. The song
      was not played live by the Eagles after the "Hell Freezes Over" tour in
      1994. It remains the group's last Top 40 hit in the U.S.
  - text: >-
      Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion
      who is considered by Christians to be one of the first Gentiles to convert
      to the faith, as related in Acts of the Apostles.
datasets:
  - sentence-transformers/natural-questions
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
  - dot_accuracy@1
  - dot_accuracy@3
  - dot_accuracy@5
  - dot_accuracy@10
  - dot_precision@1
  - dot_precision@3
  - dot_precision@5
  - dot_precision@10
  - dot_recall@1
  - dot_recall@3
  - dot_recall@5
  - dot_recall@10
  - dot_ndcg@10
  - dot_mrr@10
  - dot_map@100
  - query_active_dims
  - query_sparsity_ratio
  - corpus_active_dims
  - corpus_sparsity_ratio
co2_eq_emissions:
  emissions: 47.434702684263996
  energy_consumed: 0.12203359561891627
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.375
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
  - name: Sparse CSR model trained on Natural Questions
    results:
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoMSMARCO 8
          type: NanoMSMARCO_8
        metrics:
          - type: dot_accuracy@1
            value: 0.16
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.26
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.3
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.38
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.16
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.08666666666666666
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.06000000000000001
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.038000000000000006
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.16
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.26
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.3
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.38
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.2643920551837278
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.2287222222222222
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.2421742990834593
            name: Dot Map@100
          - type: query_active_dims
            value: 8
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.998046875
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 8
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.998046875
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-nano-beir
          name: Sparse Nano BEIR
        dataset:
          name: NanoBEIR mean 8
          type: NanoBEIR_mean_8
        metrics:
          - type: dot_accuracy@1
            value: 0.16
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.26
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.3
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.38
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.16
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.08666666666666666
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.06000000000000001
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.038000000000000006
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.16
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.26
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.3
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.38
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.2643920551837278
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.2287222222222222
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.2421742990834593
            name: Dot Map@100
          - type: query_active_dims
            value: 8
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.998046875
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 8
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.998046875
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoMSMARCO 16
          type: NanoMSMARCO_16
        metrics:
          - type: dot_accuracy@1
            value: 0.2
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.36
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.52
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.56
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.2
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.11999999999999998
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.10400000000000001
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.056000000000000015
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.2
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.36
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.52
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.56
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.37793342795121726
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.3195238095238095
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.3313906364396061
            name: Dot Map@100
          - type: query_active_dims
            value: 16
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.99609375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 16
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.99609375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-nano-beir
          name: Sparse Nano BEIR
        dataset:
          name: NanoBEIR mean 16
          type: NanoBEIR_mean_16
        metrics:
          - type: dot_accuracy@1
            value: 0.2
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.36
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.52
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.56
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.2
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.11999999999999998
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.10400000000000001
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.056000000000000015
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.2
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.36
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.52
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.56
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.37793342795121726
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.3195238095238095
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.3313906364396061
            name: Dot Map@100
          - type: query_active_dims
            value: 16
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.99609375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 16
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.99609375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoMSMARCO 32
          type: NanoMSMARCO_32
        metrics:
          - type: dot_accuracy@1
            value: 0.28
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.46
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.62
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.74
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.28
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.1533333333333333
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.124
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.07400000000000001
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.28
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.46
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.62
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.74
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.49220107783094286
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.414984126984127
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.4254258308486964
            name: Dot Map@100
          - type: query_active_dims
            value: 32
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9921875
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 32
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9921875
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-nano-beir
          name: Sparse Nano BEIR
        dataset:
          name: NanoBEIR mean 32
          type: NanoBEIR_mean_32
        metrics:
          - type: dot_accuracy@1
            value: 0.28
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.46
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.62
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.74
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.28
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.1533333333333333
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.124
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.07400000000000001
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.28
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.46
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.62
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.74
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.49220107783094286
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.414984126984127
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.4254258308486964
            name: Dot Map@100
          - type: query_active_dims
            value: 32
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9921875
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 32
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9921875
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoMSMARCO 64
          type: NanoMSMARCO_64
        metrics:
          - type: dot_accuracy@1
            value: 0.26
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.56
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.66
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.78
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.26
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.18666666666666668
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.132
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.07800000000000001
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.26
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.56
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.66
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.78
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.5211165234079713
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.43816666666666676
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.44682904023702474
            name: Dot Map@100
          - type: query_active_dims
            value: 64
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.984375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 64
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.984375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-nano-beir
          name: Sparse Nano BEIR
        dataset:
          name: NanoBEIR mean 64
          type: NanoBEIR_mean_64
        metrics:
          - type: dot_accuracy@1
            value: 0.26
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.56
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.66
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.78
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.26
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.18666666666666668
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.132
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.07800000000000001
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.26
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.56
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.66
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.78
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.5211165234079713
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.43816666666666676
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.44682904023702474
            name: Dot Map@100
          - type: query_active_dims
            value: 64
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.984375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 64
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.984375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoMSMARCO 128
          type: NanoMSMARCO_128
        metrics:
          - type: dot_accuracy@1
            value: 0.3
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.58
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.72
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.78
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.3
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.19333333333333333
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.14400000000000002
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.078
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.3
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.58
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.72
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.78
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.5452270995944036
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.4693571428571428
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.4800750120044718
            name: Dot Map@100
          - type: query_active_dims
            value: 128
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.96875
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 128
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.96875
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-nano-beir
          name: Sparse Nano BEIR
        dataset:
          name: NanoBEIR mean 128
          type: NanoBEIR_mean_128
        metrics:
          - type: dot_accuracy@1
            value: 0.3
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.58
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.72
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.78
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.3
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.19333333333333333
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.14400000000000002
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.078
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.3
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.58
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.72
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.78
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.5452270995944036
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.4693571428571428
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.4800750120044718
            name: Dot Map@100
          - type: query_active_dims
            value: 128
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.96875
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 128
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.96875
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoMSMARCO 256
          type: NanoMSMARCO_256
        metrics:
          - type: dot_accuracy@1
            value: 0.34
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.58
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.72
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.88
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.34
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.19333333333333333
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.14400000000000002
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.088
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.34
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.58
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.72
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.88
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6012297417081948
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5137063492063492
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5174560618904659
            name: Dot Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-nano-beir
          name: Sparse Nano BEIR
        dataset:
          name: NanoBEIR mean 256
          type: NanoBEIR_mean_256
        metrics:
          - type: dot_accuracy@1
            value: 0.34
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.58
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.72
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.88
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.34
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.19333333333333333
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.14400000000000002
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.088
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.34
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.58
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.72
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.88
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6012297417081948
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5137063492063492
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5174560618904659
            name: Dot Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoClimateFEVER
          type: NanoClimateFEVER
        metrics:
          - type: dot_accuracy@1
            value: 0.26
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.54
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.68
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.8
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.26
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.2
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.16
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.11599999999999999
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.125
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.264
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.3413333333333334
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.45966666666666667
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.35170577305757716
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.43010317460317443
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.2687894311785997
            name: Dot Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoDBPedia
          type: NanoDBPedia
        metrics:
          - type: dot_accuracy@1
            value: 0.84
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.86
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.94
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.98
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.84
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.64
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.5840000000000001
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.496
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.10173542236179474
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.17058256895318635
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.2583095364918772
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.3630014394355859
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6336927949275843
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.8761904761904762
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.4758024592559406
            name: Dot Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoFEVER
          type: NanoFEVER
        metrics:
          - type: dot_accuracy@1
            value: 0.86
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.92
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.94
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.94
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.86
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.3133333333333333
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.19599999999999995
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.09799999999999998
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.8066666666666665
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.8766666666666667
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.9066666666666667
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.9066666666666667
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.8718114197539545
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.8873333333333332
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.8545556012614837
            name: Dot Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoFiQA2018
          type: NanoFiQA2018
        metrics:
          - type: dot_accuracy@1
            value: 0.52
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.68
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.74
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.78
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.52
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.32666666666666666
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.244
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.136
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.27924603174603174
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.46423809523809517
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.5373730158730158
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.5967063492063491
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.524168679753325
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.6079999999999999
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.4629550043583209
            name: Dot Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoHotpotQA
          type: NanoHotpotQA
        metrics:
          - type: dot_accuracy@1
            value: 0.78
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.96
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.96
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.96
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.78
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.5266666666666666
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.33599999999999997
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.17199999999999996
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.39
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.79
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.84
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.86
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.8057192735678995
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.86
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.7534450002577441
            name: Dot Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoMSMARCO
          type: NanoMSMARCO
        metrics:
          - type: dot_accuracy@1
            value: 0.34
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.58
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.72
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.88
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.34
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.19333333333333333
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.14400000000000002
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.088
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.34
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.58
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.72
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.88
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6004025758045302
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5123253968253968
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.516161874779488
            name: Dot Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoNFCorpus
          type: NanoNFCorpus
        metrics:
          - type: dot_accuracy@1
            value: 0.36
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.54
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.58
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.78
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.36
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.3399999999999999
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.324
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.29600000000000004
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.02204584498659392
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.07879591204712627
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.10547939299642282
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.14785915311216402
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.33938410167518285
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.4792698412698413
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.15285384570175153
            name: Dot Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoNQ
          type: NanoNQ
        metrics:
          - type: dot_accuracy@1
            value: 0.48
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.7
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.78
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.84
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.48
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.23333333333333336
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.16
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.092
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.45
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.65
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.72
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.81
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6405630856499873
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.6049444444444443
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5830795845663244
            name: Dot Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoQuoraRetrieval
          type: NanoQuoraRetrieval
        metrics:
          - type: dot_accuracy@1
            value: 0.9
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.98
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 1
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 1
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.9
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.40666666666666657
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.264
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.13599999999999998
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.7773333333333332
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.9420000000000001
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.986
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.9933333333333334
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.9416151444086611
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.9406666666666667
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.9166897546897548
            name: Dot Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoSCIDOCS
          type: NanoSCIDOCS
        metrics:
          - type: dot_accuracy@1
            value: 0.54
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.72
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.8
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.96
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.54
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.3533333333333333
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.30000000000000004
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.22
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.11466666666666668
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.22066666666666662
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.3106666666666667
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.45166666666666655
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.43056509196331577
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.6608888888888889
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.33416401376998806
            name: Dot Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoArguAna
          type: NanoArguAna
        metrics:
          - type: dot_accuracy@1
            value: 0.28
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.68
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.84
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.96
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.28
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.22666666666666668
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.16799999999999998
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.09599999999999997
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.28
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.68
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.84
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.96
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6189399449298651
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5095
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5115
            name: Dot Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoSciFact
          type: NanoSciFact
        metrics:
          - type: dot_accuracy@1
            value: 0.62
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.72
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.78
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.86
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.62
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.25999999999999995
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.17199999999999996
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.09799999999999999
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.595
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.71
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.765
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.86
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.7339772270342122
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.6960238095238094
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.692771989570098
            name: Dot Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoTouche2020
          type: NanoTouche2020
        metrics:
          - type: dot_accuracy@1
            value: 0.5918367346938775
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.8367346938775511
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.9183673469387755
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.9591836734693877
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.5918367346938775
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.5510204081632653
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.5224489795918367
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.436734693877551
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.04213824203491695
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.11466092557078722
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.17849505170580585
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.28879003826995
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.48796783228419977
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.7384839650145772
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.3666982120682313
            name: Dot Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-nano-beir
          name: Sparse Nano BEIR
        dataset:
          name: NanoBEIR mean
          type: NanoBEIR_mean
        metrics:
          - type: dot_accuracy@1
            value: 0.5670643642072213
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.7474411302982732
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.8214128728414443
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.8999372056514913
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.5670643642072213
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.3516169544740973
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.2749576138147567
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.19082574568288851
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.3326024775227695
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.5032008334725021
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.5776402818256761
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.6598223317967217
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6138856111392534
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.6772099997508161
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.529958982419825
            name: Dot Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio

Sparse CSR model trained on Natural Questions

This is a CSR Sparse Encoder model finetuned from mixedbread-ai/mxbai-embed-large-v1 on the natural-questions dataset using the sentence-transformers library. It maps sentences & paragraphs to a 4096-dimensional sparse vector space with 256 maximum active dimensions and can be used for semantic search and sparse retrieval.

Model Details

Model Description

  • Model Type: CSR Sparse Encoder
  • Base model: mixedbread-ai/mxbai-embed-large-v1
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 4096 dimensions (trained with 256 maximum active dimensions)
  • Similarity Function: Dot Product
  • Training Dataset:
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SparseEncoder(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): CSRSparsity({'input_dim': 1024, 'hidden_dim': 4096, 'k': 256, 'k_aux': 512, 'normalize': False, 'dead_threshold': 30})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/csr-mxbai-embed-large-v1-nq-updated-3-gamma")
# Run inference
queries = [
    "who is cornelius in the book of acts",
]
documents = [
    'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.',
    "Joe Ranft Ranft reunited with Lasseter when he was hired by Pixar in 1991 as their head of story.[1] There he worked on all of their films produced up to 2006; this included Toy Story (for which he received an Academy Award nomination) and A Bug's Life, as the co-story writer and others as story supervisor. His final film was Cars. He also voiced characters in many of the films, including Heimlich the caterpillar in A Bug's Life, Wheezy the penguin in Toy Story 2, and Jacques the shrimp in Finding Nemo.[1]",
    'Wonderful Tonight "Wonderful Tonight" is a ballad written by Eric Clapton. It was included on Clapton\'s 1977 album Slowhand. Clapton wrote the song about Pattie Boyd.[1] The female vocal harmonies on the song are provided by Marcella Detroit (then Marcy Levy) and Yvonne Elliman.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 4096] [3, 4096]

# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[109.6969,  27.9723,  19.3123]])

Evaluation

Metrics

Sparse Information Retrieval

Metric Value
dot_accuracy@1 0.16
dot_accuracy@3 0.26
dot_accuracy@5 0.3
dot_accuracy@10 0.38
dot_precision@1 0.16
dot_precision@3 0.0867
dot_precision@5 0.06
dot_precision@10 0.038
dot_recall@1 0.16
dot_recall@3 0.26
dot_recall@5 0.3
dot_recall@10 0.38
dot_ndcg@10 0.2644
dot_mrr@10 0.2287
dot_map@100 0.2422
query_active_dims 8.0
query_sparsity_ratio 0.998
corpus_active_dims 8.0
corpus_sparsity_ratio 0.998

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean_8
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco"
        ],
        "max_active_dims": 8
    }
    
Metric Value
dot_accuracy@1 0.16
dot_accuracy@3 0.26
dot_accuracy@5 0.3
dot_accuracy@10 0.38
dot_precision@1 0.16
dot_precision@3 0.0867
dot_precision@5 0.06
dot_precision@10 0.038
dot_recall@1 0.16
dot_recall@3 0.26
dot_recall@5 0.3
dot_recall@10 0.38
dot_ndcg@10 0.2644
dot_mrr@10 0.2287
dot_map@100 0.2422
query_active_dims 8.0
query_sparsity_ratio 0.998
corpus_active_dims 8.0
corpus_sparsity_ratio 0.998

Sparse Information Retrieval

Metric Value
dot_accuracy@1 0.2
dot_accuracy@3 0.36
dot_accuracy@5 0.52
dot_accuracy@10 0.56
dot_precision@1 0.2
dot_precision@3 0.12
dot_precision@5 0.104
dot_precision@10 0.056
dot_recall@1 0.2
dot_recall@3 0.36
dot_recall@5 0.52
dot_recall@10 0.56
dot_ndcg@10 0.3779
dot_mrr@10 0.3195
dot_map@100 0.3314
query_active_dims 16.0
query_sparsity_ratio 0.9961
corpus_active_dims 16.0
corpus_sparsity_ratio 0.9961

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean_16
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco"
        ],
        "max_active_dims": 16
    }
    
Metric Value
dot_accuracy@1 0.2
dot_accuracy@3 0.36
dot_accuracy@5 0.52
dot_accuracy@10 0.56
dot_precision@1 0.2
dot_precision@3 0.12
dot_precision@5 0.104
dot_precision@10 0.056
dot_recall@1 0.2
dot_recall@3 0.36
dot_recall@5 0.52
dot_recall@10 0.56
dot_ndcg@10 0.3779
dot_mrr@10 0.3195
dot_map@100 0.3314
query_active_dims 16.0
query_sparsity_ratio 0.9961
corpus_active_dims 16.0
corpus_sparsity_ratio 0.9961

Sparse Information Retrieval

Metric Value
dot_accuracy@1 0.28
dot_accuracy@3 0.46
dot_accuracy@5 0.62
dot_accuracy@10 0.74
dot_precision@1 0.28
dot_precision@3 0.1533
dot_precision@5 0.124
dot_precision@10 0.074
dot_recall@1 0.28
dot_recall@3 0.46
dot_recall@5 0.62
dot_recall@10 0.74
dot_ndcg@10 0.4922
dot_mrr@10 0.415
dot_map@100 0.4254
query_active_dims 32.0
query_sparsity_ratio 0.9922
corpus_active_dims 32.0
corpus_sparsity_ratio 0.9922

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean_32
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco"
        ],
        "max_active_dims": 32
    }
    
Metric Value
dot_accuracy@1 0.28
dot_accuracy@3 0.46
dot_accuracy@5 0.62
dot_accuracy@10 0.74
dot_precision@1 0.28
dot_precision@3 0.1533
dot_precision@5 0.124
dot_precision@10 0.074
dot_recall@1 0.28
dot_recall@3 0.46
dot_recall@5 0.62
dot_recall@10 0.74
dot_ndcg@10 0.4922
dot_mrr@10 0.415
dot_map@100 0.4254
query_active_dims 32.0
query_sparsity_ratio 0.9922
corpus_active_dims 32.0
corpus_sparsity_ratio 0.9922

Sparse Information Retrieval

Metric Value
dot_accuracy@1 0.26
dot_accuracy@3 0.56
dot_accuracy@5 0.66
dot_accuracy@10 0.78
dot_precision@1 0.26
dot_precision@3 0.1867
dot_precision@5 0.132
dot_precision@10 0.078
dot_recall@1 0.26
dot_recall@3 0.56
dot_recall@5 0.66
dot_recall@10 0.78
dot_ndcg@10 0.5211
dot_mrr@10 0.4382
dot_map@100 0.4468
query_active_dims 64.0
query_sparsity_ratio 0.9844
corpus_active_dims 64.0
corpus_sparsity_ratio 0.9844

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean_64
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco"
        ],
        "max_active_dims": 64
    }
    
Metric Value
dot_accuracy@1 0.26
dot_accuracy@3 0.56
dot_accuracy@5 0.66
dot_accuracy@10 0.78
dot_precision@1 0.26
dot_precision@3 0.1867
dot_precision@5 0.132
dot_precision@10 0.078
dot_recall@1 0.26
dot_recall@3 0.56
dot_recall@5 0.66
dot_recall@10 0.78
dot_ndcg@10 0.5211
dot_mrr@10 0.4382
dot_map@100 0.4468
query_active_dims 64.0
query_sparsity_ratio 0.9844
corpus_active_dims 64.0
corpus_sparsity_ratio 0.9844

Sparse Information Retrieval

Metric Value
dot_accuracy@1 0.3
dot_accuracy@3 0.58
dot_accuracy@5 0.72
dot_accuracy@10 0.78
dot_precision@1 0.3
dot_precision@3 0.1933
dot_precision@5 0.144
dot_precision@10 0.078
dot_recall@1 0.3
dot_recall@3 0.58
dot_recall@5 0.72
dot_recall@10 0.78
dot_ndcg@10 0.5452
dot_mrr@10 0.4694
dot_map@100 0.4801
query_active_dims 128.0
query_sparsity_ratio 0.9688
corpus_active_dims 128.0
corpus_sparsity_ratio 0.9688

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean_128
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco"
        ],
        "max_active_dims": 128
    }
    
Metric Value
dot_accuracy@1 0.3
dot_accuracy@3 0.58
dot_accuracy@5 0.72
dot_accuracy@10 0.78
dot_precision@1 0.3
dot_precision@3 0.1933
dot_precision@5 0.144
dot_precision@10 0.078
dot_recall@1 0.3
dot_recall@3 0.58
dot_recall@5 0.72
dot_recall@10 0.78
dot_ndcg@10 0.5452
dot_mrr@10 0.4694
dot_map@100 0.4801
query_active_dims 128.0
query_sparsity_ratio 0.9688
corpus_active_dims 128.0
corpus_sparsity_ratio 0.9688

Sparse Information Retrieval

Metric Value
dot_accuracy@1 0.34
dot_accuracy@3 0.58
dot_accuracy@5 0.72
dot_accuracy@10 0.88
dot_precision@1 0.34
dot_precision@3 0.1933
dot_precision@5 0.144
dot_precision@10 0.088
dot_recall@1 0.34
dot_recall@3 0.58
dot_recall@5 0.72
dot_recall@10 0.88
dot_ndcg@10 0.6012
dot_mrr@10 0.5137
dot_map@100 0.5175
query_active_dims 256.0
query_sparsity_ratio 0.9375
corpus_active_dims 256.0
corpus_sparsity_ratio 0.9375

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean_256
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco"
        ],
        "max_active_dims": 256
    }
    
Metric Value
dot_accuracy@1 0.34
dot_accuracy@3 0.58
dot_accuracy@5 0.72
dot_accuracy@10 0.88
dot_precision@1 0.34
dot_precision@3 0.1933
dot_precision@5 0.144
dot_precision@10 0.088
dot_recall@1 0.34
dot_recall@3 0.58
dot_recall@5 0.72
dot_recall@10 0.88
dot_ndcg@10 0.6012
dot_mrr@10 0.5137
dot_map@100 0.5175
query_active_dims 256.0
query_sparsity_ratio 0.9375
corpus_active_dims 256.0
corpus_sparsity_ratio 0.9375

Sparse Information Retrieval

  • Datasets: NanoClimateFEVER, NanoDBPedia, NanoFEVER, NanoFiQA2018, NanoHotpotQA, NanoMSMARCO, NanoNFCorpus, NanoNQ, NanoQuoraRetrieval, NanoSCIDOCS, NanoArguAna, NanoSciFact and NanoTouche2020
  • Evaluated with SparseInformationRetrievalEvaluator
Metric NanoClimateFEVER NanoDBPedia NanoFEVER NanoFiQA2018 NanoHotpotQA NanoMSMARCO NanoNFCorpus NanoNQ NanoQuoraRetrieval NanoSCIDOCS NanoArguAna NanoSciFact NanoTouche2020
dot_accuracy@1 0.26 0.84 0.86 0.52 0.78 0.34 0.36 0.48 0.9 0.54 0.28 0.62 0.5918
dot_accuracy@3 0.54 0.86 0.92 0.68 0.96 0.58 0.54 0.7 0.98 0.72 0.68 0.72 0.8367
dot_accuracy@5 0.68 0.94 0.94 0.74 0.96 0.72 0.58 0.78 1.0 0.8 0.84 0.78 0.9184
dot_accuracy@10 0.8 0.98 0.94 0.78 0.96 0.88 0.78 0.84 1.0 0.96 0.96 0.86 0.9592
dot_precision@1 0.26 0.84 0.86 0.52 0.78 0.34 0.36 0.48 0.9 0.54 0.28 0.62 0.5918
dot_precision@3 0.2 0.64 0.3133 0.3267 0.5267 0.1933 0.34 0.2333 0.4067 0.3533 0.2267 0.26 0.551
dot_precision@5 0.16 0.584 0.196 0.244 0.336 0.144 0.324 0.16 0.264 0.3 0.168 0.172 0.5224
dot_precision@10 0.116 0.496 0.098 0.136 0.172 0.088 0.296 0.092 0.136 0.22 0.096 0.098 0.4367
dot_recall@1 0.125 0.1017 0.8067 0.2792 0.39 0.34 0.022 0.45 0.7773 0.1147 0.28 0.595 0.0421
dot_recall@3 0.264 0.1706 0.8767 0.4642 0.79 0.58 0.0788 0.65 0.942 0.2207 0.68 0.71 0.1147
dot_recall@5 0.3413 0.2583 0.9067 0.5374 0.84 0.72 0.1055 0.72 0.986 0.3107 0.84 0.765 0.1785
dot_recall@10 0.4597 0.363 0.9067 0.5967 0.86 0.88 0.1479 0.81 0.9933 0.4517 0.96 0.86 0.2888
dot_ndcg@10 0.3517 0.6337 0.8718 0.5242 0.8057 0.6004 0.3394 0.6406 0.9416 0.4306 0.6189 0.734 0.488
dot_mrr@10 0.4301 0.8762 0.8873 0.608 0.86 0.5123 0.4793 0.6049 0.9407 0.6609 0.5095 0.696 0.7385
dot_map@100 0.2688 0.4758 0.8546 0.463 0.7534 0.5162 0.1529 0.5831 0.9167 0.3342 0.5115 0.6928 0.3667
query_active_dims 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0
query_sparsity_ratio 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375
corpus_active_dims 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0 256.0
corpus_sparsity_ratio 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375 0.9375

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "climatefever",
            "dbpedia",
            "fever",
            "fiqa2018",
            "hotpotqa",
            "msmarco",
            "nfcorpus",
            "nq",
            "quoraretrieval",
            "scidocs",
            "arguana",
            "scifact",
            "touche2020"
        ]
    }
    
Metric Value
dot_accuracy@1 0.5671
dot_accuracy@3 0.7474
dot_accuracy@5 0.8214
dot_accuracy@10 0.8999
dot_precision@1 0.5671
dot_precision@3 0.3516
dot_precision@5 0.275
dot_precision@10 0.1908
dot_recall@1 0.3326
dot_recall@3 0.5032
dot_recall@5 0.5776
dot_recall@10 0.6598
dot_ndcg@10 0.6139
dot_mrr@10 0.6772
dot_map@100 0.53
query_active_dims 256.0
query_sparsity_ratio 0.9375
corpus_active_dims 256.0
corpus_sparsity_ratio 0.9375

Training Details

Training Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 99,000 training samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 10 tokens
    • mean: 11.71 tokens
    • max: 26 tokens
    • min: 4 tokens
    • mean: 131.81 tokens
    • max: 450 tokens
  • Samples:
    query answer
    who played the father in papa don't preach Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.
    where was the location of the battle of hastings Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.
    how many puppies can a dog give birth to Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]
  • Loss: CSRLoss with these parameters:
    {
        "beta": 0.1,
        "gamma": 3.0,
        "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')"
    }
    

Evaluation Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 1,000 evaluation samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 10 tokens
    • mean: 11.69 tokens
    • max: 23 tokens
    • min: 15 tokens
    • mean: 134.01 tokens
    • max: 512 tokens
  • Samples:
    query answer
    where is the tiber river located in italy Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.
    what kind of car does jay gatsby drive Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.
    who sings if i can dream about you I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]
  • Loss: CSRLoss with these parameters:
    {
        "beta": 0.1,
        "gamma": 3.0,
        "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • learning_rate: 4e-05
  • num_train_epochs: 1
  • bf16: True
  • load_best_model_at_end: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 4e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss Validation Loss NanoMSMARCO_8_dot_ndcg@10 NanoBEIR_mean_8_dot_ndcg@10 NanoMSMARCO_16_dot_ndcg@10 NanoBEIR_mean_16_dot_ndcg@10 NanoMSMARCO_32_dot_ndcg@10 NanoBEIR_mean_32_dot_ndcg@10 NanoMSMARCO_64_dot_ndcg@10 NanoBEIR_mean_64_dot_ndcg@10 NanoMSMARCO_128_dot_ndcg@10 NanoBEIR_mean_128_dot_ndcg@10 NanoMSMARCO_256_dot_ndcg@10 NanoBEIR_mean_256_dot_ndcg@10 NanoClimateFEVER_dot_ndcg@10 NanoDBPedia_dot_ndcg@10 NanoFEVER_dot_ndcg@10 NanoFiQA2018_dot_ndcg@10 NanoHotpotQA_dot_ndcg@10 NanoMSMARCO_dot_ndcg@10 NanoNFCorpus_dot_ndcg@10 NanoNQ_dot_ndcg@10 NanoQuoraRetrieval_dot_ndcg@10 NanoSCIDOCS_dot_ndcg@10 NanoArguAna_dot_ndcg@10 NanoSciFact_dot_ndcg@10 NanoTouche2020_dot_ndcg@10 NanoBEIR_mean_dot_ndcg@10
-1 -1 - - 0.1761 0.1761 0.3606 0.3606 0.4594 0.4594 0.5242 0.5242 0.5340 0.5340 0.6114 0.6114 - - - - - - - - - - - - - -
0.0646 100 0.4772 - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.1293 200 0.5194 - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.1939 300 0.5562 0.5943 0.1845 0.1845 0.3927 0.3927 0.4948 0.4948 0.5317 0.5317 0.5446 0.5446 0.5852 0.5852 - - - - - - - - - - - - - -
0.2586 400 0.4754 - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.3232 500 0.5033 - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.3878 600 0.5309 0.4936 0.2922 0.2922 0.4045 0.4045 0.4662 0.4662 0.5397 0.5397 0.5570 0.5570 0.5925 0.5925 - - - - - - - - - - - - - -
0.4525 700 0.5566 - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.5171 800 0.5634 - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.5818 900 0.549 0.4587 0.2317 0.2317 0.3703 0.3703 0.4874 0.4874 0.5371 0.5371 0.5722 0.5722 0.5795 0.5795 - - - - - - - - - - - - - -
0.6464 1000 0.5503 - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.7111 1100 0.4568 - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.7757 1200 0.5555 0.4304 0.3129 0.3129 0.3837 0.3837 0.5105 0.5105 0.5042 0.5042 0.5435 0.5435 0.6011 0.6011 - - - - - - - - - - - - - -
0.8403 1300 0.518 - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.9050 1400 0.4763 - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.9696 1500 0.4828 0.4055 0.2644 0.2644 0.3779 0.3779 0.4922 0.4922 0.5211 0.5211 0.5452 0.5452 0.6012 0.6012 - - - - - - - - - - - - - -
-1 -1 - - - - - - - - - - - - - - 0.3517 0.6337 0.8718 0.5242 0.8057 0.6004 0.3394 0.6406 0.9416 0.4306 0.6189 0.7340 0.4880 0.6139
  • The bold row denotes the saved checkpoint.

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.122 kWh
  • Carbon Emitted: 0.047 kg of CO2
  • Hours Used: 0.375 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 4.2.0.dev0
  • Transformers: 4.52.4
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.5.1
  • Datasets: 2.21.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CSRLoss

@misc{wen2025matryoshkarevisitingsparsecoding,
      title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation},
      author={Tiansheng Wen and Yifei Wang and Zequn Zeng and Zhong Peng and Yudi Su and Xinyang Liu and Bo Chen and Hongwei Liu and Stefanie Jegelka and Chenyu You},
      year={2025},
      eprint={2503.01776},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2503.01776},
}

SparseMultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}