Inference-free SPLADE BERT-tiny trained on Natural-Questions tuples

This is a Asymmetric Inference-free SPLADE Sparse Encoder model trained on the natural-questions dataset using the sentence-transformers library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.

Model Details

Model Description

  • Model Type: Asymmetric Inference-free SPLADE Sparse Encoder
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 30522 dimensions
  • Similarity Function: Dot Product
  • Training Dataset:
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SparseEncoder(
  (0): Asym(
    (query_0_IDF): IDF ({'frozen': False}, dim:30522, tokenizer: BertTokenizerFast)
    (corpus_0_MLMTransformer): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM 
    (corpus_1_SpladePooling): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
  )
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/inference-free-splade-bert-tiny-nq-3e-3-lambda-corpus")
# Run inference
sentences = [
    'when did the american civil rights movement end',
    'African-American civil rights movement (1954–1968) The Civil Rights Movement (also known as the American civil rights movement, African-American civil rights movement, and other terms,[b]) was a human rights movement from 1954–1968 that encompassed strategies, groups, and social movements to accomplish its goal of ending legalized racial segregation and discrimination laws in the United States. The movement secured the legal recognition and federal protection of black Americans in the United States Constitution and federal law.',
    'Paleolithic Paleolithic humans made tools of stone, bone, and wood.[23] The early paleolithic hominins, Australopithecus, were the first users of stone tools. Excavations in Gona, Ethiopia have produced thousands of artifacts, and through radioisotopic dating and magnetostratigraphy, the sites can be firmly dated to 2.6Â\xa0million years ago. Evidence shows these early hominins intentionally selected raw materials with good flaking qualities and chose appropriate sized stones for their needs to produce sharp-edged tools for cutting.[29]',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# (3, 30522)

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Sparse Information Retrieval

Metric NanoMSMARCO NanoNFCorpus NanoNQ
dot_accuracy@1 0.3 0.46 0.24
dot_accuracy@3 0.46 0.56 0.5
dot_accuracy@5 0.52 0.6 0.64
dot_accuracy@10 0.66 0.66 0.74
dot_precision@1 0.3 0.46 0.24
dot_precision@3 0.1533 0.36 0.1667
dot_precision@5 0.104 0.312 0.128
dot_precision@10 0.066 0.248 0.074
dot_recall@1 0.3 0.0438 0.24
dot_recall@3 0.46 0.0729 0.48
dot_recall@5 0.52 0.1097 0.61
dot_recall@10 0.66 0.1332 0.7
dot_ndcg@10 0.4614 0.3231 0.4673
dot_mrr@10 0.3999 0.5245 0.4007
dot_map@100 0.4174 0.1394 0.3953

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ]
    }
    
Metric Value
dot_accuracy@1 0.3333
dot_accuracy@3 0.5067
dot_accuracy@5 0.5867
dot_accuracy@10 0.6867
dot_precision@1 0.3333
dot_precision@3 0.2267
dot_precision@5 0.1813
dot_precision@10 0.1293
dot_recall@1 0.1946
dot_recall@3 0.3376
dot_recall@5 0.4132
dot_recall@10 0.4977
dot_ndcg@10 0.4172
dot_mrr@10 0.4417
dot_map@100 0.3174

Training Details

Training Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 99,000 training samples
  • Columns: query and corpus
  • Approximate statistics based on the first 1000 samples:
    query corpus
    type dict dict
    details
  • Samples:
    query corpus
    {'query': "who played the father in papa don't preach"} {'corpus': 'Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.'}
    {'query': 'where was the location of the battle of hastings'} {'corpus': 'Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.'}
    {'query': 'how many puppies can a dog give birth to'} {'corpus': 'Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]'}
  • Loss: SpladeLoss with these parameters:
    {'loss': SparseMultipleNegativesRankingLoss(
      (model): SparseEncoder(
        (0): Asym(
          (query_0_IDF): IDF ({'frozen': False}, dim:30522, tokenizer: BertTokenizerFast)
          (corpus_0_MLMTransformer): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM 
          (corpus_1_SpladePooling): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
        )
      )
      (cross_entropy_loss): CrossEntropyLoss()
    ), 'lambda_corpus': 0.003, 'lambda_query': 0, 'corpus_regularizer': FlopsLoss(
      (model): SparseEncoder(
        (0): Asym(
          (query_0_IDF): IDF ({'frozen': False}, dim:30522, tokenizer: BertTokenizerFast)
          (corpus_0_MLMTransformer): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM 
          (corpus_1_SpladePooling): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
        )
      )
    ), 'query_regularizer': None}
    

Evaluation Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 1,000 evaluation samples
  • Columns: query and corpus
  • Approximate statistics based on the first 1000 samples:
    query corpus
    type dict dict
    details
  • Samples:
    query corpus
    {'query': 'where is the tiber river located in italy'} {'corpus': 'Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252\xa0mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709\xa0sq\xa0mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.'}
    {'query': 'what kind of car does jay gatsby drive'} {'corpus': 'Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.'}
    {'query': 'who sings if i can dream about you'} {'corpus': 'I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]'}
  • Loss: SpladeLoss with these parameters:
    {'loss': SparseMultipleNegativesRankingLoss(
      (model): SparseEncoder(
        (0): Asym(
          (query_0_IDF): IDF ({'frozen': False}, dim:30522, tokenizer: BertTokenizerFast)
          (corpus_0_MLMTransformer): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM 
          (corpus_1_SpladePooling): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
        )
      )
      (cross_entropy_loss): CrossEntropyLoss()
    ), 'lambda_corpus': 0.003, 'lambda_query': 0, 'corpus_regularizer': FlopsLoss(
      (model): SparseEncoder(
        (0): Asym(
          (query_0_IDF): IDF ({'frozen': False}, dim:30522, tokenizer: BertTokenizerFast)
          (corpus_0_MLMTransformer): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM 
          (corpus_1_SpladePooling): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
        )
      )
    ), 'query_regularizer': None}
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss NanoMSMARCO_dot_ndcg@10 NanoNFCorpus_dot_ndcg@10 NanoNQ_dot_ndcg@10 NanoBEIR_mean_dot_ndcg@10
0.0129 20 1.5874 - - - - -
0.0259 40 1.7845 - - - - -
0.0388 60 1.924 - - - - -
0.0517 80 1.6441 - - - - -
0.0646 100 1.1842 - - - - -
0.0776 120 0.9556 - - - - -
0.0905 140 0.8623 - - - - -
0.1034 160 0.7888 - - - - -
0.1164 180 0.7923 - - - - -
0.1293 200 0.7464 0.6235 0.4629 0.3201 0.4511 0.4113
0.1422 220 0.7121 - - - - -
0.1551 240 0.6795 - - - - -
0.1681 260 0.7187 - - - - -
0.1810 280 0.6786 - - - - -
0.1939 300 0.6608 - - - - -
0.2069 320 0.6625 - - - - -
0.2198 340 0.651 - - - - -
0.2327 360 0.6671 - - - - -
0.2456 380 0.6732 - - - - -
0.2586 400 0.6301 0.5740 0.4243 0.3278 0.4273 0.3931
0.2715 420 0.6375 - - - - -
0.2844 440 0.6651 - - - - -
0.2973 460 0.6378 - - - - -
0.3103 480 0.6592 - - - - -
0.3232 500 0.6404 - - - - -
0.3361 520 0.6216 - - - - -
0.3491 540 0.6072 - - - - -
0.3620 560 0.6508 - - - - -
0.3749 580 0.5645 - - - - -
0.3878 600 0.6275 0.4993 0.4352 0.3241 0.4227 0.3940
0.4008 620 0.566 - - - - -
0.4137 640 0.5063 - - - - -
0.4266 660 0.5297 - - - - -
0.4396 680 0.5448 - - - - -
0.4525 700 0.5436 - - - - -
0.4654 720 0.4771 - - - - -
0.4783 740 0.5035 - - - - -
0.4913 760 0.5005 - - - - -
0.5042 780 0.4509 - - - - -
0.5171 800 0.4956 0.4341 0.4596 0.3280 0.4357 0.4078
0.5301 820 0.4876 - - - - -
0.5430 840 0.4622 - - - - -
0.5559 860 0.4791 - - - - -
0.5688 880 0.4608 - - - - -
0.5818 900 0.451 - - - - -
0.5947 920 0.4537 - - - - -
0.6076 940 0.4233 - - - - -
0.6206 960 0.4534 - - - - -
0.6335 980 0.4701 - - - - -
0.6464 1000 0.4017 0.4052 0.4692 0.3271 0.4452 0.4138
0.6593 1020 0.4518 - - - - -
0.6723 1040 0.4173 - - - - -
0.6852 1060 0.4369 - - - - -
0.6981 1080 0.456 - - - - -
0.7111 1100 0.448 - - - - -
0.7240 1120 0.4369 - - - - -
0.7369 1140 0.4394 - - - - -
0.7498 1160 0.437 - - - - -
0.7628 1180 0.4402 - - - - -
0.7757 1200 0.4382 0.3901 0.4623 0.3238 0.4664 0.4175
0.7886 1220 0.4111 - - - - -
0.8016 1240 0.4386 - - - - -
0.8145 1260 0.4136 - - - - -
0.8274 1280 0.4439 - - - - -
0.8403 1300 0.4423 - - - - -
0.8533 1320 0.4339 - - - - -
0.8662 1340 0.4124 - - - - -
0.8791 1360 0.417 - - - - -
0.8920 1380 0.4067 - - - - -
0.9050 1400 0.414 0.3854 0.4591 0.3234 0.4660 0.4162
0.9179 1420 0.4153 - - - - -
0.9308 1440 0.3889 - - - - -
0.9438 1460 0.4368 - - - - -
0.9567 1480 0.4241 - - - - -
0.9696 1500 0.423 - - - - -
0.9825 1520 0.4287 - - - - -
0.9955 1540 0.4282 - - - - -
-1 -1 - - 0.4614 0.3231 0.4673 0.4172

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.030 kWh
  • Carbon Emitted: 0.011 kg of CO2
  • Hours Used: 0.087 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 4.2.0.dev0
  • Transformers: 4.49.0
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.5.1
  • Datasets: 2.21.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

SpladeLoss

@misc{formal2022distillationhardnegativesampling,
      title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
      author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
      year={2022},
      eprint={2205.04733},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2205.04733},
}
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train tomaarsen/inference-free-splade-bert-tiny-nq-3e-3-lambda-corpus

Evaluation results