tomaarsen's picture
tomaarsen HF Staff
Add new SentenceTransformer model
6d5b5b1 verified
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:99231
- loss:CachedMultipleNegativesRankingLoss
base_model: microsoft/mpnet-base
widget:
- source_sentence: who led the army that defeated the aztecs
sentences:
- Spanish conquest of the Aztec Empire The Spanish conquest of the Aztec Empire,
or the Spanish-Aztec War (1519-21)[3] was one of the most significant and complex
events in world history. There are multiple sixteenth-century narratives of the
events by Spanish conquerors, their indigenous allies, and the defeated Aztecs.
It was not solely a contest between a small contingent of Spaniards defeating
the Aztec Empire, but rather the creation of a coalition of Spanish invaders with
tributaries to the Aztecs, and most especially the Aztecs' indigenous enemies
and rivals. They combined forces to defeat the Mexica of Tenochtitlan over a two-year
period. For the Spanish, the expedition to Mexico was part of a project of Spanish
colonization of the New World after twenty-five years of permanent Spanish settlement
and further exploration in the Caribbean. The Spanish made landfall in Mexico
in 1517. A Spanish settler in Cuba, Hernán Cortés, led an expedition (entrada)
to Mexico, landing in February 1519, following an earlier expedition led by Juan
de Grijalva to Yucatán in 1517. Two years later Cortés and his retinue set sail,
thus beginning the expedition of exploration and conquest.[4] The Spanish campaign
against the Aztec Empire had its final victory on August 13, 1521, when a coalition
army of Spanish forces and native Tlaxcalan warriors led by Cortés and Xicotencatl
the Younger captured the emperor Cuauhtemoc and Tenochtitlan, the capital of the
Aztec Empire. The fall of Tenochtitlan marks the beginning of Spanish rule in
central Mexico, and they established their capital of Mexico City on the ruins
of Tenochtitlan.
- The Girl with All the Gifts Justineau awakens in the Rosalind Franklin. Melanie
leads her to a group of intelligent hungries, to whom Justineau, wearing an environmental
protection suit, starts teaching the alphabet.
- 'Wendy Makkena In 1992 she had a supporting role in the movie Sister Act as the
shy but talented singing nun Sister Mary Robert, a role she reprised in Sister
Act 2: Back in the Habit the following year. She appeared in various other television
roles until 1997, when she starred in Air Bud, followed by the independent film
Finding North. She continued appearing on television shows such as The Job, Oliver
Beene, and Listen Up![citation needed]'
- source_sentence: who went to the most nba finals in a row
sentences:
- List of NBA franchise post-season streaks The San Antonio Spurs hold the longest
active consecutive playoff appearances with 21 appearances, starting in the 1998
NBA Playoffs (also the longest active playoff streak in any major North American
sports league as of 2017). The Spurs have won five NBA championships during the
streak. The Philadelphia 76ers (formerly known as Syracuse Nationals) hold the
all-time record for consecutive playoff appearances with 22 straight appearances
between 1950 and 1971. The 76ers won two NBA championships during their streak.
The Boston Celtics hold the longest consecutive NBA Finals appearance streak with
ten appearances between 1957 and 1966. During the streak, the Celtics won eight
consecutive NBA championships—also an NBA record.
- Dear Dumb Diary Dear Dumb Diary is a series of children's novels by Jim Benton.
Each book is written in the first person view of a middle school girl named Jamie
Kelly. The series is published by Scholastic in English and Random House in Korean.
Film rights to the series have been optioned by the Gotham Group.[2]
- Voting rights in the United States Eligibility to vote in the United States is
established both through the federal constitution and by state law. Several constitutional
amendments (the 15th, 19th, and 26th specifically) require that voting rights
cannot be abridged on account of race, color, previous condition of servitude,
sex, or age for those above 18; the constitution as originally written did not
establish any such rights during 1787–1870. In the absence of a specific federal
law or constitutional provision, each state is given considerable discretion to
establish qualifications for suffrage and candidacy within its own respective
jurisdiction; in addition, states and lower level jurisdictions establish election
systems, such as at-large or single member district elections for county councils
or school boards.
- source_sentence: who did the vocals on mcdonald's jingle i'm loving it
sentences:
- I'm Lovin' It (song) "I'm Lovin' It" is a song recorded by American singer-songwriter
Justin Timberlake. It was written by Pusha T and produced by The Neptunes.
- Vallabhbhai Patel As the first Home Minister and Deputy Prime Minister of India,
Patel organised relief efforts for refugees fleeing from Punjab and Delhi and
worked to restore peace across the nation. He led the task of forging a united
India, successfully integrating into the newly independent nation those British
colonial provinces that had been "allocated" to India. Besides those provinces
that had been under direct British rule, approximately 565 self-governing princely
states had been released from British suzerainty by the Indian Independence Act
of 1947. Employing frank diplomacy with the expressed option to deploy military
force, Patel persuaded almost every princely state to accede to India. His commitment
to national integration in the newly independent country was total and uncompromising,
earning him the sobriquet "Iron Man of India".[3] He is also affectionately remembered
as the "Patron saint of India's civil servants" for having established the modern
all-India services system. He is also called the Unifier of India.[4]
- National debt of the United States As of July 31, 2018, debt held by the public
was $15.6 trillion and intragovernmental holdings were $5.7 trillion, for a total
or "National Debt" of $21.3 trillion.[5] Debt held by the public was approximately
77% of GDP in 2017, ranked 43rd highest out of 207 countries.[6] The Congressional
Budget Office forecast in April 2018 that the ratio will rise to nearly 100% by
2028, perhaps higher if current policies are extended beyond their scheduled expiration
date.[7] As of December 2017, $6.3 trillion or approximately 45% of the debt held
by the public was owned by foreign investors, the largest being China (about $1.18
trillion) then Japan (about $1.06 trillion).[8]
- source_sentence: who is the actress of harley quinn in suicide squad
sentences:
- Tariffs in United States history Tariffs were the main source of revenue for the
federal government from 1789 to 1914. During this period, there was vigorous debate
between the various political parties over the setting of tariff rates. In general
Democrats favored a tariff that would pay the cost of government, but no higher.
Whigs and Republicans favored higher tariffs to protect and encourage American
industry and industrial workers. Since the early 20th century, however, U.S. tariffs
have been very low and have been much less a matter of partisan debate.
- The Rolling Stones The Rolling Stones are an English rock band formed in London,
England in 1962. The first stable line-up consisted of Brian Jones (guitar, harmonica),
Mick Jagger (lead vocals), Keith Richards (guitar, backing vocals), Bill Wyman
(bass), Charlie Watts (drums), and Ian Stewart (piano). Stewart was removed from
the official line-up in 1963 but continued as a touring member until his death
in 1985. Jones left the band less than a month prior to his death in 1969, having
already been replaced by Mick Taylor, who remained until 1974. After Taylor left
the band, Ronnie Wood took his place in 1975 and has been on guitar in tandem
with Richards ever since. Following Wyman's departure in 1993, Darryl Jones joined
as their touring bassist. Touring keyboardists for the band have been Nicky Hopkins
(1967–1982), Ian McLagan (1978–1981), Billy Preston (through the mid-1970s) and
Chuck Leavell (1982–present). The band was first led by Brian Jones, but after
developing into the band's songwriters, Jagger and Richards assumed leadership
while Jones dealt with legal and personal troubles.
- Margot Robbie After moving to the United States, Robbie starred in the short-lived
ABC drama series Pan Am (2011–2012). In 2013, she made her big screen debut in
Richard Curtis's romantic comedy-drama film About Time and co-starred in Martin
Scorsese's biographical black comedy The Wolf of Wall Street. In 2015, Robbie
co-starred in the romantic comedy-drama film Focus, appeared in the romantic World
War II drama film Suite Française and starred in the science fiction film Z for
Zachariah. That same year, she played herself in The Big Short. In 2016, she portrayed
Jane Porter in the action-adventure film The Legend of Tarzan and Harley Quinn
in the superhero film Suicide Squad. She appeared on Time magazine's "The Most
Influential People of 2017" list.[4]
- source_sentence: what is meaning of am and pm in time
sentences:
- America's Got Talent America's Got Talent (often abbreviated as AGT) is a televised
American talent show competition, broadcast on the NBC television network. It
is part of the global Got Talent franchise created by Simon Cowell, and is produced
by Fremantle North America and SYCOtv, with distribution done by Fremantle. Since
its premiere in June 2006, each season is run during the network's summer schedule,
with the show having featured various hosts - it is currently hosted by Tyra Banks,
since 2017.[2] It is the first global edition of the franchise, after plans for
a British edition in 2005 were suspended, following a dispute between Paul O'Grady,
the planned host, and the British broadcaster ITV; production of this edition
later resumed in 2007.[3]
- Times Square Times Square is a major commercial intersection, tourist destination,
entertainment center and neighborhood in the Midtown Manhattan section of New
York City at the junction of Broadway and Seventh Avenue. It stretches from West
42nd to West 47th Streets.[1] Brightly adorned with billboards and advertisements,
Times Square is sometimes referred to as "The Crossroads of the World",[2] "The
Center of the Universe",[3] "the heart of The Great White Way",[4][5][6] and the
"heart of the world".[7] One of the world's busiest pedestrian areas,[8] it is
also the hub of the Broadway Theater District[9] and a major center of the world's
entertainment industry.[10] Times Square is one of the world's most visited tourist
attractions, drawing an estimated 50 million visitors annually.[11] Approximately
330,000 people pass through Times Square daily,[12] many of them tourists,[13]
while over 460,000 pedestrians walk through Times Square on its busiest days.[7]
- '12-hour clock The 12-hour clock is a time convention in which the 24 hours of
the day are divided into two periods:[1] a.m. (from the Latin, ante meridiem,
meaning before midday) and p.m. (post meridiem, meaning past midday).[2] Each
period consists of 12 hours numbered: 12 (acting as zero),[3] 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, and 11. The 24 hour/day cycle starts at 12 midnight (often indicated
as 12 a.m.), runs through 12 noon (often indicated as 12 p.m.), and continues
to the midnight at the end of the day. The 12-hour clock was developed over time
from the mid-second millennium BC to the 16th century AD.'
datasets:
- sentence-transformers/natural-questions
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
co2_eq_emissions:
emissions: 100.49635551408996
energy_consumed: 0.37551604693967594
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.956
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: MPNet base trained on Natural Questions pairs
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoClimateFEVER
type: NanoClimateFEVER
metrics:
- type: cosine_accuracy@1
value: 0.34
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.4
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.52
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.68
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.34
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.15333333333333332
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.124
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08199999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.15666666666666665
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.19666666666666666
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.245
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.32899999999999996
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2874373031622126
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.40833333333333327
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.23720812652159773
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoDBPedia
type: NanoDBPedia
metrics:
- type: cosine_accuracy@1
value: 0.5
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.86
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.49999999999999994
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.456
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.4
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.033460574803481
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.1379456043967994
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.19236008288900686
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.27718360985007373
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4815217166466425
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6581904761904761
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.34038401700749055
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoFEVER
type: NanoFEVER
metrics:
- type: cosine_accuracy@1
value: 0.56
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.68
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.78
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.84
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.56
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08599999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.55
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.66
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.75
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6774195829582105
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6484444444444444
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6375252923987764
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoFiQA2018
type: NanoFiQA2018
metrics:
- type: cosine_accuracy@1
value: 0.32
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.48
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.54
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.62
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.32
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.19333333333333336
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.092
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.16969047619047622
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.2751031746031746
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.35526984126984124
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.43926984126984125
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.3484809857651704
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.412
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.29317086609082804
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoHotpotQA
type: NanoHotpotQA
metrics:
- type: cosine_accuracy@1
value: 0.5
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.62
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.66
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.72
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26666666666666666
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.172
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.102
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.25
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.4
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.43
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.51
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4646363664054244
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5711666666666667
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.40372265204584074
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoMSMARCO
type: NanoMSMARCO
metrics:
- type: cosine_accuracy@1
value: 0.24
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.72
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.24
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.16666666666666663
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.12000000000000002
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07200000000000001
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.24
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.72
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4662300989052903
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.38596825396825385
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3966342163469757
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoNFCorpus
type: NanoNFCorpus
metrics:
- type: cosine_accuracy@1
value: 0.38
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.52
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.6
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.38
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.32
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.28
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.22399999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.013385350979353738
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.04273144042314974
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.05311513788935319
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.09414123513400076
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.26378524693375555
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.44563492063492055
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.08765440666496092
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoNQ
type: NanoNQ
metrics:
- type: cosine_accuracy@1
value: 0.38
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.66
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.76
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.38
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.21333333333333332
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.14
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08199999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.36
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.59
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.64
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.74
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.56110661357524
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.507888888888889
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5087680789990747
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoQuoraRetrieval
type: NanoQuoraRetrieval
metrics:
- type: cosine_accuracy@1
value: 0.9
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.92
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.92
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.94
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.37999999999999995
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.236
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.12799999999999997
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7873333333333332
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8786666666666667
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8893333333333334
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.93
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9060776365512109
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9133333333333334
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8958434676434677
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoSCIDOCS
type: NanoSCIDOCS
metrics:
- type: cosine_accuracy@1
value: 0.42
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.58
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.62
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.84
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.42
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2866666666666666
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.23600000000000004
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.182
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.08866666666666669
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.1776666666666667
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.2426666666666667
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.3746666666666666
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.3499542026448552
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.524547619047619
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.26373167166015693
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoArguAna
type: NanoArguAna
metrics:
- type: cosine_accuracy@1
value: 0.16
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.62
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.72
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.88
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.16
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.20666666666666667
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.14400000000000002
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.088
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.16
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.62
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.72
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.88
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5149778577506615
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.39771428571428574
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.4040354269913093
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoSciFact
type: NanoSciFact
metrics:
- type: cosine_accuracy@1
value: 0.42
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.62
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.64
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.72
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.42
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.21999999999999997
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.136
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08199999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.385
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.59
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.61
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.71
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5604524461977042
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.525357142857143
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5119986720475846
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoTouche2020
type: NanoTouche2020
metrics:
- type: cosine_accuracy@1
value: 0.5306122448979592
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8571428571428571
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8979591836734694
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9591836734693877
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5306122448979592
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.5714285714285714
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.5346938775510204
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.41836734693877553
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.04151746748360336
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.12605393943663232
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.1939653912321698
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.2801024018430986
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4767149331432611
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6991739552964044
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3725605659989721
name: Cosine Map@100
- task:
type: nano-beir
name: Nano BEIR
dataset:
name: NanoBEIR mean
type: NanoBEIR_mean
metrics:
- type: cosine_accuracy@1
value: 0.43466248037676614
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6290109890109891
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6875353218210362
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7830141287284145
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.43466248037676614
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28549450549450545
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.2229764521193093
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.15679748822605966
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.24890157970181387
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.3996026276045966
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.45551618871387467
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5449510580587446
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.48913807620304917
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.54598102464429
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.4117874969551566
name: Cosine Map@100
---
# MPNet base trained on Natural Questions pairs
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions)
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'MPNetModel'})
(1): Router(
(sub_modules): ModuleDict(
(query): Sequential(
(0): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
(document): Sequential(
(0): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True})
)
)
)
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/cls-last-split-pooling")
# Run inference
queries = [
"what is meaning of am and pm in time",
]
documents = [
'12-hour clock The 12-hour clock is a time convention in which the 24 hours of the day are divided into two periods:[1] a.m. (from the Latin, ante meridiem, meaning before midday) and p.m. (post meridiem, meaning past midday).[2] Each period consists of 12 hours numbered: 12 (acting as zero),[3] 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11. The 24 hour/day cycle starts at 12 midnight (often indicated as 12 a.m.), runs through 12 noon (often indicated as 12 p.m.), and continues to the midnight at the end of the day. The 12-hour clock was developed over time from the mid-second millennium BC to the 16th century AD.',
"America's Got Talent America's Got Talent (often abbreviated as AGT) is a televised American talent show competition, broadcast on the NBC television network. It is part of the global Got Talent franchise created by Simon Cowell, and is produced by Fremantle North America and SYCOtv, with distribution done by Fremantle. Since its premiere in June 2006, each season is run during the network's summer schedule, with the show having featured various hosts - it is currently hosted by Tyra Banks, since 2017.[2] It is the first global edition of the franchise, after plans for a British edition in 2005 were suspended, following a dispute between Paul O'Grady, the planned host, and the British broadcaster ITV; production of this edition later resumed in 2007.[3]",
'Times Square Times Square is a major commercial intersection, tourist destination, entertainment center and neighborhood in the Midtown Manhattan section of New York City at the junction of Broadway and Seventh Avenue. It stretches from West 42nd to West 47th Streets.[1] Brightly adorned with billboards and advertisements, Times Square is sometimes referred to as "The Crossroads of the World",[2] "The Center of the Universe",[3] "the heart of The Great White Way",[4][5][6] and the "heart of the world".[7] One of the world\'s busiest pedestrian areas,[8] it is also the hub of the Broadway Theater District[9] and a major center of the world\'s entertainment industry.[10] Times Square is one of the world\'s most visited tourist attractions, drawing an estimated 50 million visitors annually.[11] Approximately 330,000 people pass through Times Square daily,[12] many of them tourists,[13] while over 460,000 pedestrians walk through Times Square on its busiest days.[7]',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 768] [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[0.5485, 0.0270, 0.1584]])
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Datasets: `NanoClimateFEVER`, `NanoDBPedia`, `NanoFEVER`, `NanoFiQA2018`, `NanoHotpotQA`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoQuoraRetrieval`, `NanoSCIDOCS`, `NanoArguAna`, `NanoSciFact` and `NanoTouche2020`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
|:--------------------|:-----------------|:------------|:-----------|:-------------|:-------------|:------------|:-------------|:-----------|:-------------------|:------------|:------------|:------------|:---------------|
| cosine_accuracy@1 | 0.34 | 0.5 | 0.56 | 0.32 | 0.5 | 0.24 | 0.38 | 0.38 | 0.9 | 0.42 | 0.16 | 0.42 | 0.5306 |
| cosine_accuracy@3 | 0.4 | 0.8 | 0.68 | 0.48 | 0.62 | 0.5 | 0.5 | 0.6 | 0.92 | 0.58 | 0.62 | 0.62 | 0.8571 |
| cosine_accuracy@5 | 0.52 | 0.86 | 0.78 | 0.54 | 0.66 | 0.6 | 0.52 | 0.66 | 0.92 | 0.62 | 0.72 | 0.64 | 0.898 |
| cosine_accuracy@10 | 0.68 | 0.9 | 0.84 | 0.62 | 0.72 | 0.72 | 0.6 | 0.76 | 0.94 | 0.84 | 0.88 | 0.72 | 0.9592 |
| cosine_precision@1 | 0.34 | 0.5 | 0.56 | 0.32 | 0.5 | 0.24 | 0.38 | 0.38 | 0.9 | 0.42 | 0.16 | 0.42 | 0.5306 |
| cosine_precision@3 | 0.1533 | 0.5 | 0.2333 | 0.1933 | 0.2667 | 0.1667 | 0.32 | 0.2133 | 0.38 | 0.2867 | 0.2067 | 0.22 | 0.5714 |
| cosine_precision@5 | 0.124 | 0.456 | 0.16 | 0.16 | 0.172 | 0.12 | 0.28 | 0.14 | 0.236 | 0.236 | 0.144 | 0.136 | 0.5347 |
| cosine_precision@10 | 0.082 | 0.4 | 0.086 | 0.092 | 0.102 | 0.072 | 0.224 | 0.082 | 0.128 | 0.182 | 0.088 | 0.082 | 0.4184 |
| cosine_recall@1 | 0.1567 | 0.0335 | 0.55 | 0.1697 | 0.25 | 0.24 | 0.0134 | 0.36 | 0.7873 | 0.0887 | 0.16 | 0.385 | 0.0415 |
| cosine_recall@3 | 0.1967 | 0.1379 | 0.66 | 0.2751 | 0.4 | 0.5 | 0.0427 | 0.59 | 0.8787 | 0.1777 | 0.62 | 0.59 | 0.1261 |
| cosine_recall@5 | 0.245 | 0.1924 | 0.75 | 0.3553 | 0.43 | 0.6 | 0.0531 | 0.64 | 0.8893 | 0.2427 | 0.72 | 0.61 | 0.194 |
| cosine_recall@10 | 0.329 | 0.2772 | 0.8 | 0.4393 | 0.51 | 0.72 | 0.0941 | 0.74 | 0.93 | 0.3747 | 0.88 | 0.71 | 0.2801 |
| **cosine_ndcg@10** | **0.2874** | **0.4815** | **0.6774** | **0.3485** | **0.4646** | **0.4662** | **0.2638** | **0.5611** | **0.9061** | **0.35** | **0.515** | **0.5605** | **0.4767** |
| cosine_mrr@10 | 0.4083 | 0.6582 | 0.6484 | 0.412 | 0.5712 | 0.386 | 0.4456 | 0.5079 | 0.9133 | 0.5245 | 0.3977 | 0.5254 | 0.6992 |
| cosine_map@100 | 0.2372 | 0.3404 | 0.6375 | 0.2932 | 0.4037 | 0.3966 | 0.0877 | 0.5088 | 0.8958 | 0.2637 | 0.404 | 0.512 | 0.3726 |
#### Nano BEIR
* Dataset: `NanoBEIR_mean`
* Evaluated with [<code>NanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.NanoBEIREvaluator) with these parameters:
```json
{
"dataset_names": [
"climatefever",
"dbpedia",
"fever",
"fiqa2018",
"hotpotqa",
"msmarco",
"nfcorpus",
"nq",
"quoraretrieval",
"scidocs",
"arguana",
"scifact",
"touche2020"
]
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.4347 |
| cosine_accuracy@3 | 0.629 |
| cosine_accuracy@5 | 0.6875 |
| cosine_accuracy@10 | 0.783 |
| cosine_precision@1 | 0.4347 |
| cosine_precision@3 | 0.2855 |
| cosine_precision@5 | 0.223 |
| cosine_precision@10 | 0.1568 |
| cosine_recall@1 | 0.2489 |
| cosine_recall@3 | 0.3996 |
| cosine_recall@5 | 0.4555 |
| cosine_recall@10 | 0.545 |
| **cosine_ndcg@10** | **0.4891** |
| cosine_mrr@10 | 0.546 |
| cosine_map@100 | 0.4118 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### natural-questions
* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 99,231 training samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | query | answer |
|:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 11.74 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 137.2 tokens</li><li>max: 508 tokens</li></ul> |
* Samples:
| query | answer |
|:------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>who is required to report according to the hmda</code> | <code>Home Mortgage Disclosure Act US financial institutions must report HMDA data to their regulator if they meet certain criteria, such as having assets above a specific threshold. The criteria is different for depository and non-depository institutions and are available on the FFIEC website.[4] In 2012, there were 7,400 institutions that reported a total of 18.7 million HMDA records.[5]</code> |
| <code>what is the definition of endoplasmic reticulum in biology</code> | <code>Endoplasmic reticulum The endoplasmic reticulum (ER) is a type of organelle in eukaryotic cells that forms an interconnected network of flattened, membrane-enclosed sacs or tube-like structures known as cisternae. The membranes of the ER are continuous with the outer nuclear membrane. The endoplasmic reticulum occurs in most types of eukaryotic cells, but is absent from red blood cells and spermatozoa. There are two types of endoplasmic reticulum: rough and smooth. The outer (cytosolic) face of the rough endoplasmic reticulum is studded with ribosomes that are the sites of protein synthesis. The rough endoplasmic reticulum is especially prominent in cells such as hepatocytes. The smooth endoplasmic reticulum lacks ribosomes and functions in lipid manufacture and metabolism, the production of steroid hormones, and detoxification.[1] The smooth ER is especially abundant in mammalian liver and gonad cells. The lacy membranes of the endoplasmic reticulum were first seen in 1945 using elect...</code> |
| <code>what does the ski mean in polish names</code> | <code>Polish name Since the High Middle Ages, Polish-sounding surnames ending with the masculine -ski suffix, including -cki and -dzki, and the corresponding feminine suffix -ska/-cka/-dzka were associated with the nobility (Polish szlachta), which alone, in the early years, had such suffix distinctions.[1] They are widely popular today.</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"mini_batch_size": 16,
"gather_across_devices": false
}
```
### Evaluation Dataset
#### natural-questions
* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 1,000 evaluation samples
* Columns: <code>query</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | query | answer |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 11.78 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 135.64 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| query | answer |
|:------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>difference between russian blue and british blue cat</code> | <code>Russian Blue The coat is known as a "double coat", with the undercoat being soft, downy and equal in length to the guard hairs, which are an even blue with silver tips. However, the tail may have a few very dull, almost unnoticeable stripes. The coat is described as thick, plush and soft to the touch. The feeling is softer than the softest silk. The silver tips give the coat a shimmering appearance. Its eyes are almost always a dark and vivid green. Any white patches of fur or yellow eyes in adulthood are seen as flaws in show cats.[3] Russian Blues should not be confused with British Blues (which are not a distinct breed, but rather a British Shorthair with a blue coat as the British Shorthair breed itself comes in a wide variety of colors and patterns), nor the Chartreux or Korat which are two other naturally occurring breeds of blue cats, although they have similar traits.</code> |
| <code>who played the little girl on mrs doubtfire</code> | <code>Mara Wilson Mara Elizabeth Wilson[2] (born July 24, 1987) is an American writer and former child actress. She is known for playing Natalie Hillard in Mrs. Doubtfire (1993), Susan Walker in Miracle on 34th Street (1994), Matilda Wormwood in Matilda (1996) and Lily Stone in Thomas and the Magic Railroad (2000). Since retiring from film acting, Wilson has focused on writing.</code> |
| <code>what year did the movie the sound of music come out</code> | <code>The Sound of Music (film) The film was released on March 2, 1965 in the United States, initially as a limited roadshow theatrical release. Although critical response to the film was widely mixed, the film was a major commercial success, becoming the number one box office movie after four weeks, and the highest-grossing film of 1965. By November 1966, The Sound of Music had become the highest-grossing film of all-time—surpassing Gone with the Wind—and held that distinction for five years. The film was just as popular throughout the world, breaking previous box-office records in twenty-nine countries. Following an initial theatrical release that lasted four and a half years, and two successful re-releases, the film sold 283 million admissions worldwide and earned a total worldwide gross of $286,000,000.</code> |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"mini_batch_size": 16,
"gather_across_devices": false
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `seed`: 12
- `bf16`: True
- `batch_sampler`: no_duplicates
- `router_mapping`: {'query': 'query', 'answer': 'document'}
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 12
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {'query': 'query', 'answer': 'document'}
- `learning_rate_mapping`: {}
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | NanoClimateFEVER_cosine_ndcg@10 | NanoDBPedia_cosine_ndcg@10 | NanoFEVER_cosine_ndcg@10 | NanoFiQA2018_cosine_ndcg@10 | NanoHotpotQA_cosine_ndcg@10 | NanoMSMARCO_cosine_ndcg@10 | NanoNFCorpus_cosine_ndcg@10 | NanoNQ_cosine_ndcg@10 | NanoQuoraRetrieval_cosine_ndcg@10 | NanoSCIDOCS_cosine_ndcg@10 | NanoArguAna_cosine_ndcg@10 | NanoSciFact_cosine_ndcg@10 | NanoTouche2020_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 |
|:------:|:----:|:-------------:|:---------------:|:-------------------------------:|:--------------------------:|:------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:---------------------:|:---------------------------------:|:--------------------------:|:--------------------------:|:--------------------------:|:-----------------------------:|:----------------------------:|
| -1 | -1 | - | - | 0.0630 | 0.1506 | 0.1219 | 0.0264 | 0.1597 | 0.0674 | 0.0332 | 0.0715 | 0.3045 | 0.0708 | 0.1367 | 0.1019 | 0.1166 | 0.1096 |
| 0.0026 | 1 | 5.5974 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0129 | 5 | 5.3551 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0258 | 10 | 5.0092 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0387 | 15 | 4.4557 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0515 | 20 | 3.2672 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0644 | 25 | 1.9936 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0773 | 30 | 1.3587 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0902 | 35 | 1.0273 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1031 | 40 | 0.7769 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1160 | 45 | 0.5939 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1289 | 50 | 0.4739 | 0.2552 | 0.2749 | 0.4683 | 0.6305 | 0.3643 | 0.4449 | 0.4521 | 0.1968 | 0.4122 | 0.8490 | 0.3413 | 0.5203 | 0.4890 | 0.4388 | 0.4525 |
| 0.1418 | 55 | 0.417 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1546 | 60 | 0.4114 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1675 | 65 | 0.3787 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1804 | 70 | 0.3349 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1933 | 75 | 0.3161 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2062 | 80 | 0.3358 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2191 | 85 | 0.2999 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2320 | 90 | 0.3039 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2448 | 95 | 0.2502 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2577 | 100 | 0.225 | 0.1430 | 0.2907 | 0.4866 | 0.6736 | 0.3518 | 0.4464 | 0.4605 | 0.2073 | 0.4936 | 0.8874 | 0.3542 | 0.5146 | 0.5442 | 0.4653 | 0.4751 |
| 0.2706 | 105 | 0.263 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2835 | 110 | 0.3001 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2964 | 115 | 0.224 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3093 | 120 | 0.2394 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3222 | 125 | 0.2487 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3351 | 130 | 0.1954 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3479 | 135 | 0.2194 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3608 | 140 | 0.2514 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3737 | 145 | 0.2145 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3866 | 150 | 0.2053 | 0.1190 | 0.2912 | 0.4807 | 0.6543 | 0.3429 | 0.4563 | 0.4598 | 0.2422 | 0.5075 | 0.9008 | 0.3552 | 0.5323 | 0.5575 | 0.4581 | 0.4799 |
| 0.3995 | 155 | 0.2405 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4124 | 160 | 0.2207 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4253 | 165 | 0.1908 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4381 | 170 | 0.1832 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4510 | 175 | 0.2108 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4639 | 180 | 0.1901 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4768 | 185 | 0.2118 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4897 | 190 | 0.1813 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5026 | 195 | 0.1848 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5155 | 200 | 0.1932 | 0.1043 | 0.2857 | 0.4838 | 0.6747 | 0.3592 | 0.4611 | 0.4738 | 0.2415 | 0.5336 | 0.8939 | 0.3539 | 0.5101 | 0.5442 | 0.4726 | 0.4837 |
| 0.5284 | 205 | 0.2004 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5412 | 210 | 0.1874 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5541 | 215 | 0.1548 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5670 | 220 | 0.1662 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5799 | 225 | 0.158 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5928 | 230 | 0.1951 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6057 | 235 | 0.1935 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6186 | 240 | 0.1665 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6314 | 245 | 0.1557 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6443 | 250 | 0.1987 | 0.0963 | 0.2834 | 0.4801 | 0.6737 | 0.3522 | 0.4610 | 0.4736 | 0.2478 | 0.5643 | 0.8999 | 0.3437 | 0.5225 | 0.5353 | 0.4802 | 0.4860 |
| 0.6572 | 255 | 0.1612 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6701 | 260 | 0.1859 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6830 | 265 | 0.1983 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6959 | 270 | 0.1688 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7088 | 275 | 0.1949 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7216 | 280 | 0.1684 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7345 | 285 | 0.1834 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7474 | 290 | 0.1673 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7603 | 295 | 0.185 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7732 | 300 | 0.1529 | 0.0902 | 0.2827 | 0.4798 | 0.6636 | 0.3486 | 0.4528 | 0.4634 | 0.2530 | 0.5602 | 0.9064 | 0.3519 | 0.5204 | 0.5531 | 0.4727 | 0.4853 |
| 0.7861 | 305 | 0.2042 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7990 | 310 | 0.1995 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.8119 | 315 | 0.1579 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.8247 | 320 | 0.1711 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.8376 | 325 | 0.17 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.8505 | 330 | 0.1539 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.8634 | 335 | 0.151 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.8763 | 340 | 0.1642 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.8892 | 345 | 0.1669 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9021 | 350 | 0.1475 | 0.0911 | 0.2874 | 0.4843 | 0.6724 | 0.3450 | 0.4536 | 0.4590 | 0.2616 | 0.5611 | 0.9064 | 0.3501 | 0.5114 | 0.5675 | 0.4718 | 0.4870 |
| 0.9149 | 355 | 0.1842 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9278 | 360 | 0.1858 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9407 | 365 | 0.2033 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9536 | 370 | 0.181 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9665 | 375 | 0.1525 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9794 | 380 | 0.1722 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9923 | 385 | 0.1547 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| -1 | -1 | - | - | 0.2874 | 0.4815 | 0.6774 | 0.3485 | 0.4646 | 0.4662 | 0.2638 | 0.5611 | 0.9061 | 0.3500 | 0.5150 | 0.5605 | 0.4767 | 0.4891 |
### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 0.376 kWh
- **Carbon Emitted**: 0.100 kg of CO2
- **Hours Used**: 0.956 hours
### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB
### Framework Versions
- Python: 3.11.6
- Sentence Transformers: 5.2.0.dev0
- Transformers: 4.56.0.dev0
- PyTorch: 2.7.1+cu126
- Accelerate: 1.6.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### CachedMultipleNegativesRankingLoss
```bibtex
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->