MiniLM-L12-H384-uncased trained on GooAQ

This is a Cross Encoder model finetuned from microsoft/MiniLM-L12-H384-uncased using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.

Model Details

Model Description

  • Model Type: Cross Encoder
  • Base model: microsoft/MiniLM-L12-H384-uncased
  • Maximum Sequence Length: 512 tokens
  • Number of Output Labels: 1 label
  • Language: en
  • License: apache-2.0

Model Sources

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import CrossEncoder

# Download from the 🤗 Hub
model = CrossEncoder("tomaarsen/reranker-MiniLM-L12-gooaq-bce")
# Get scores for pairs of texts
pairs = [
    ['what is the remote desktop connection broker?', 'A remote desktop connection broker is software that allows clients to access various types of server-hosted desktops and applications. ... Load balancing the servers that host the desktops. Managing desktop images. Redirecting multimedia processing to the client.'],
    ['what is the remote desktop connection broker?', 'Remote Desktop Connection (RDC, also called Remote Desktop, formerly Microsoft Terminal Services Client, mstsc or tsclient) is the client application for RDS. It allows a user to remotely log into a networked computer running the terminal services server.'],
    ['what is the remote desktop connection broker?', "['Click the Start menu on your PC and search for Remote Desktop Connection.', 'Launch Remote Desktop Connection and click on Show Options.', 'Select the Local Resources tab and click More.', 'Under Drives, check the box for your C: drive or the drives that contain the files you will transfer and click OK.']"],
    ['what is the remote desktop connection broker?', "['Press the MENU button on your remote.', 'Select Parental Favs & Setup > System Setup > Remote or Remote Control > Program Remote.', 'Choose the device (TV, audio, DVD) you want to program. ... ', 'Follow the on-screen instructions to finish programming your remote.']"],
    ['what is the remote desktop connection broker?', "['Press MENU on your remote.', 'Select Parental Favs & Setup > System Setup > Remote or Remote Control > Program Remote.', 'Choose the device (TV, audio, DVD) you wish to program. ... ', 'Follow the on-screen prompts to complete the programming.']"],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)

# Or rank different texts based on similarity to a single text
ranks = model.rank(
    'what is the remote desktop connection broker?',
    [
        'A remote desktop connection broker is software that allows clients to access various types of server-hosted desktops and applications. ... Load balancing the servers that host the desktops. Managing desktop images. Redirecting multimedia processing to the client.',
        'Remote Desktop Connection (RDC, also called Remote Desktop, formerly Microsoft Terminal Services Client, mstsc or tsclient) is the client application for RDS. It allows a user to remotely log into a networked computer running the terminal services server.',
        "['Click the Start menu on your PC and search for Remote Desktop Connection.', 'Launch Remote Desktop Connection and click on Show Options.', 'Select the Local Resources tab and click More.', 'Under Drives, check the box for your C: drive or the drives that contain the files you will transfer and click OK.']",
        "['Press the MENU button on your remote.', 'Select Parental Favs & Setup > System Setup > Remote or Remote Control > Program Remote.', 'Choose the device (TV, audio, DVD) you want to program. ... ', 'Follow the on-screen instructions to finish programming your remote.']",
        "['Press MENU on your remote.', 'Select Parental Favs & Setup > System Setup > Remote or Remote Control > Program Remote.', 'Choose the device (TV, audio, DVD) you wish to program. ... ', 'Follow the on-screen prompts to complete the programming.']",
    ]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]

Evaluation

Metrics

Cross Encoder Reranking

Metric Value
map 0.6856 (+0.1545)
mrr@10 0.6830 (+0.1591)
ndcg@10 0.7314 (+0.1402)

Cross Encoder Reranking

  • Datasets: NanoMSMARCO_R100, NanoNFCorpus_R100 and NanoNQ_R100
  • Evaluated with CrossEncoderRerankingEvaluator with these parameters:
    {
        "at_k": 10,
        "always_rerank_positives": true
    }
    
Metric NanoMSMARCO_R100 NanoNFCorpus_R100 NanoNQ_R100
map 0.4320 (-0.0576) 0.3503 (+0.0894) 0.5234 (+0.1038)
mrr@10 0.4205 (-0.0570) 0.5706 (+0.0708) 0.5284 (+0.1018)
ndcg@10 0.5022 (-0.0382) 0.3846 (+0.0596) 0.5854 (+0.0847)

Cross Encoder Nano BEIR

  • Dataset: NanoBEIR_R100_mean
  • Evaluated with CrossEncoderNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ],
        "rerank_k": 100,
        "at_k": 10,
        "always_rerank_positives": true
    }
    
Metric Value
map 0.4353 (+0.0452)
mrr@10 0.5065 (+0.0385)
ndcg@10 0.4907 (+0.0354)

Training Details

Training Dataset

Unnamed Dataset

  • Size: 578,402 training samples
  • Columns: question, answer, and label
  • Approximate statistics based on the first 1000 samples:
    question answer label
    type string string int
    details
    • min: 18 characters
    • mean: 42.66 characters
    • max: 73 characters
    • min: 51 characters
    • mean: 252.61 characters
    • max: 368 characters
    • 0: ~82.90%
    • 1: ~17.10%
  • Samples:
    question answer label
    what is the remote desktop connection broker? A remote desktop connection broker is software that allows clients to access various types of server-hosted desktops and applications. ... Load balancing the servers that host the desktops. Managing desktop images. Redirecting multimedia processing to the client. 1
    what is the remote desktop connection broker? Remote Desktop Connection (RDC, also called Remote Desktop, formerly Microsoft Terminal Services Client, mstsc or tsclient) is the client application for RDS. It allows a user to remotely log into a networked computer running the terminal services server. 0
    what is the remote desktop connection broker? ['Click the Start menu on your PC and search for Remote Desktop Connection.', 'Launch Remote Desktop Connection and click on Show Options.', 'Select the Local Resources tab and click More.', 'Under Drives, check the box for your C: drive or the drives that contain the files you will transfer and click OK.'] 0
  • Loss: BinaryCrossEntropyLoss with these parameters:
    {
        "activation_fn": "torch.nn.modules.linear.Identity",
        "pos_weight": 5
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • seed: 12
  • bf16: True
  • dataloader_num_workers: 4
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 12
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 4
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss gooaq-dev_ndcg@10 NanoMSMARCO_R100_ndcg@10 NanoNFCorpus_R100_ndcg@10 NanoNQ_R100_ndcg@10 NanoBEIR_R100_mean_ndcg@10
-1 -1 - 0.1548 (-0.4365) 0.0475 (-0.4929) 0.2762 (-0.0489) 0.0485 (-0.4521) 0.1241 (-0.3313)
0.0001 1 1.0439 - - - - -
0.0221 200 1.1645 - - - - -
0.0443 400 1.0837 - - - - -
0.0664 600 0.8732 - - - - -
0.0885 800 0.7901 - - - - -
0.1106 1000 0.755 0.6710 (+0.0798) 0.5150 (-0.0254) 0.3164 (-0.0086) 0.6085 (+0.1079) 0.4800 (+0.0246)
0.1328 1200 0.7095 - - - - -
0.1549 1400 0.7094 - - - - -
0.1770 1600 0.6715 - - - - -
0.1992 1800 0.6583 - - - - -
0.2213 2000 0.6865 0.6994 (+0.1082) 0.5033 (-0.0372) 0.3608 (+0.0357) 0.6058 (+0.1052) 0.4900 (+0.0346)
0.2434 2200 0.6392 - - - - -
0.2655 2400 0.6403 - - - - -
0.2877 2600 0.6538 - - - - -
0.3098 2800 0.6273 - - - - -
0.3319 3000 0.6091 0.7033 (+0.1121) 0.4779 (-0.0625) 0.3369 (+0.0119) 0.5859 (+0.0852) 0.4669 (+0.0115)
0.3541 3200 0.6244 - - - - -
0.3762 3400 0.6246 - - - - -
0.3983 3600 0.6222 - - - - -
0.4204 3800 0.5986 - - - - -
0.4426 4000 0.622 0.7252 (+0.1339) 0.5538 (+0.0133) 0.3718 (+0.0468) 0.5965 (+0.0959) 0.5074 (+0.0520)
0.4647 4200 0.5742 - - - - -
0.4868 4400 0.6171 - - - - -
0.5090 4600 0.6023 - - - - -
0.5311 4800 0.5988 - - - - -
0.5532 5000 0.5693 0.7248 (+0.1336) 0.5174 (-0.0231) 0.3631 (+0.0381) 0.5575 (+0.0569) 0.4793 (+0.0240)
0.5753 5200 0.5783 - - - - -
0.5975 5400 0.5866 - - - - -
0.6196 5600 0.543 - - - - -
0.6417 5800 0.57 - - - - -
0.6639 6000 0.5662 0.7273 (+0.1361) 0.5148 (-0.0256) 0.3644 (+0.0393) 0.5754 (+0.0748) 0.4849 (+0.0295)
0.6860 6200 0.5605 - - - - -
0.7081 6400 0.5836 - - - - -
0.7303 6600 0.5703 - - - - -
0.7524 6800 0.5732 - - - - -
0.7745 7000 0.5679 0.7306 (+0.1394) 0.5185 (-0.0219) 0.3767 (+0.0517) 0.5826 (+0.0820) 0.4926 (+0.0372)
0.7966 7200 0.5454 - - - - -
0.8188 7400 0.5471 - - - - -
0.8409 7600 0.5592 - - - - -
0.8630 7800 0.5545 - - - - -
0.8852 8000 0.5477 0.7314 (+0.1402) 0.5022 (-0.0382) 0.3846 (+0.0596) 0.5854 (+0.0847) 0.4907 (+0.0354)
0.9073 8200 0.5411 - - - - -
0.9294 8400 0.5299 - - - - -
0.9515 8600 0.5677 - - - - -
0.9737 8800 0.5202 - - - - -
0.9958 9000 0.5211 0.7311 (+0.1399) 0.5090 (-0.0315) 0.3735 (+0.0484) 0.5923 (+0.0916) 0.4916 (+0.0362)
-1 -1 - 0.7314 (+0.1402) 0.5022 (-0.0382) 0.3846 (+0.0596) 0.5854 (+0.0847) 0.4907 (+0.0354)
  • The bold row denotes the saved checkpoint.

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.143 kWh
  • Carbon Emitted: 0.056 kg of CO2
  • Hours Used: 0.391 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 3.5.0.dev0
  • Transformers: 4.49.0
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.5.1
  • Datasets: 3.3.2
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
6
Safetensors
Model size
33.4M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for tomaarsen/reranker-MiniLM-L12-gooaq-bce

Finetuned
(83)
this model

Collection including tomaarsen/reranker-MiniLM-L12-gooaq-bce

Evaluation results