ModernBERT-base trained on GooAQ
This is a Cross Encoder model finetuned from answerdotai/ModernBERT-base using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
Model Details
Model Description
- Model Type: Cross Encoder
- Base model: answerdotai/ModernBERT-base
- Maximum Sequence Length: 8192 tokens
- Number of Output Labels: 1 label
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Cross Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Cross Encoders on Hugging Face
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
# Download from the 🤗 Hub
model = CrossEncoder("tomaarsen/reranker-ModernBERT-base-gooaq-bce-random")
# Get scores for pairs of texts
pairs = [
['is esurance a reputable company?', "Esurance auto insurance earned 4.5 stars out of 5 for overall performance. ... Based on these ratings, Esurance is among NerdWallet's Best Car Insurance Companies for 2020. Esurance offers all the usual coverage options, plus optional coverage including: Emergency roadside assistance."],
['is esurance a reputable company?', 'Coinsurance in property insurance is a means for insurers to obtain rate and premium equality. ... Rates are applied against a specified percentage (100, 90, or 80 percent, for example) of the value to the insured: building, contents, or business income.'],
['is esurance a reputable company?', 'Some employers offer both term life insurance coverage and supplemental life insurance. Term life insurance through your employer generally works like regular term life insurance. ... Supplemental life insurance is similar to a group term life insurance policy, but is typically more limited.'],
['is esurance a reputable company?', "Third party insurance is the legal minimum. This means you're covered if you have an accident causing damage or injury to any other person, vehicle, animal or property. It does not cover any other costs like repair to your own vehicle. You may want to use an insurance broker."],
['is esurance a reputable company?', 'In the United States, corporations have limited liability and the expression corporation is preferred to limited company. A "limited liability company" (LLC) is a different entity. However, some states permit corporations to have the designation Ltd. (instead of the usual Inc.) to signify their corporate status.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'is esurance a reputable company?',
[
"Esurance auto insurance earned 4.5 stars out of 5 for overall performance. ... Based on these ratings, Esurance is among NerdWallet's Best Car Insurance Companies for 2020. Esurance offers all the usual coverage options, plus optional coverage including: Emergency roadside assistance.",
'Coinsurance in property insurance is a means for insurers to obtain rate and premium equality. ... Rates are applied against a specified percentage (100, 90, or 80 percent, for example) of the value to the insured: building, contents, or business income.',
'Some employers offer both term life insurance coverage and supplemental life insurance. Term life insurance through your employer generally works like regular term life insurance. ... Supplemental life insurance is similar to a group term life insurance policy, but is typically more limited.',
"Third party insurance is the legal minimum. This means you're covered if you have an accident causing damage or injury to any other person, vehicle, animal or property. It does not cover any other costs like repair to your own vehicle. You may want to use an insurance broker.",
'In the United States, corporations have limited liability and the expression corporation is preferred to limited company. A "limited liability company" (LLC) is a different entity. However, some states permit corporations to have the designation Ltd. (instead of the usual Inc.) to signify their corporate status.',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
Evaluation
Metrics
Cross Encoder Reranking
- Dataset:
gooaq-dev
- Evaluated with
CrossEncoderRerankingEvaluator
with these parameters:{ "at_k": 10, "always_rerank_positives": false }
Metric | Value |
---|---|
map | 0.7285 (+0.1974) |
mrr@10 | 0.7270 (+0.2030) |
ndcg@10 | 0.7700 (+0.1787) |
Cross Encoder Reranking
- Datasets:
NanoMSMARCO_R100
,NanoNFCorpus_R100
andNanoNQ_R100
- Evaluated with
CrossEncoderRerankingEvaluator
with these parameters:{ "at_k": 10, "always_rerank_positives": true }
Metric | NanoMSMARCO_R100 | NanoNFCorpus_R100 | NanoNQ_R100 |
---|---|---|---|
map | 0.4718 (-0.0178) | 0.3424 (+0.0814) | 0.5178 (+0.0982) |
mrr@10 | 0.4647 (-0.0128) | 0.5554 (+0.0555) | 0.5159 (+0.0892) |
ndcg@10 | 0.5533 (+0.0129) | 0.3784 (+0.0534) | 0.5882 (+0.0875) |
Cross Encoder Nano BEIR
- Dataset:
NanoBEIR_R100_mean
- Evaluated with
CrossEncoderNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "msmarco", "nfcorpus", "nq" ], "rerank_k": 100, "at_k": 10, "always_rerank_positives": true }
Metric | Value |
---|---|
map | 0.4440 (+0.0539) |
mrr@10 | 0.5120 (+0.0440) |
ndcg@10 | 0.5066 (+0.0513) |
Training Details
Training Dataset
Unnamed Dataset
- Size: 578,402 training samples
- Columns:
question
,answer
, andlabel
- Approximate statistics based on the first 1000 samples:
question answer label type string string int details - min: 21 characters
- mean: 44.5 characters
- max: 101 characters
- min: 54 characters
- mean: 253.36 characters
- max: 397 characters
- 0: ~83.00%
- 1: ~17.00%
- Samples:
question answer label is esurance a reputable company?
Esurance auto insurance earned 4.5 stars out of 5 for overall performance. ... Based on these ratings, Esurance is among NerdWallet's Best Car Insurance Companies for 2020. Esurance offers all the usual coverage options, plus optional coverage including: Emergency roadside assistance.
1
is esurance a reputable company?
Coinsurance in property insurance is a means for insurers to obtain rate and premium equality. ... Rates are applied against a specified percentage (100, 90, or 80 percent, for example) of the value to the insured: building, contents, or business income.
0
is esurance a reputable company?
Some employers offer both term life insurance coverage and supplemental life insurance. Term life insurance through your employer generally works like regular term life insurance. ... Supplemental life insurance is similar to a group term life insurance policy, but is typically more limited.
0
- Loss:
BinaryCrossEntropyLoss
with these parameters:{ "activation_fct": "torch.nn.modules.linear.Identity", "pos_weight": 5 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1seed
: 12bf16
: Truedataloader_num_workers
: 4load_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 12data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 4dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | gooaq-dev_ndcg@10 | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10 | NanoBEIR_R100_mean_ndcg@10 |
---|---|---|---|---|---|---|---|
-1 | -1 | - | 0.1307 (-0.4605) | 0.0867 (-0.4537) | 0.3025 (-0.0226) | 0.0200 (-0.4806) | 0.1364 (-0.3190) |
0.0001 | 1 | 1.1444 | - | - | - | - | - |
0.0221 | 200 | 1.182 | - | - | - | - | - |
0.0443 | 400 | 0.9767 | - | - | - | - | - |
0.0664 | 600 | 0.5736 | - | - | - | - | - |
0.0885 | 800 | 0.4752 | - | - | - | - | - |
0.1106 | 1000 | 0.4281 | 0.7180 (+0.1268) | 0.4989 (-0.0415) | 0.3655 (+0.0405) | 0.5535 (+0.0529) | 0.4726 (+0.0173) |
0.1328 | 1200 | 0.3803 | - | - | - | - | - |
0.1549 | 1400 | 0.3646 | - | - | - | - | - |
0.1770 | 1600 | 0.3535 | - | - | - | - | - |
0.1992 | 1800 | 0.3498 | - | - | - | - | - |
0.2213 | 2000 | 0.3237 | 0.7328 (+0.1416) | 0.5173 (-0.0231) | 0.3619 (+0.0368) | 0.6429 (+0.1423) | 0.5074 (+0.0520) |
0.2434 | 2200 | 0.3199 | - | - | - | - | - |
0.2655 | 2400 | 0.3196 | - | - | - | - | - |
0.2877 | 2600 | 0.317 | - | - | - | - | - |
0.3098 | 2800 | 0.3134 | - | - | - | - | - |
0.3319 | 3000 | 0.2915 | 0.7501 (+0.1589) | 0.5589 (+0.0184) | 0.3926 (+0.0676) | 0.5667 (+0.0660) | 0.5060 (+0.0507) |
0.3541 | 3200 | 0.3022 | - | - | - | - | - |
0.3762 | 3400 | 0.2847 | - | - | - | - | - |
0.3983 | 3600 | 0.2903 | - | - | - | - | - |
0.4204 | 3800 | 0.2882 | - | - | - | - | - |
0.4426 | 4000 | 0.2916 | 0.7516 (+0.1604) | 0.5858 (+0.0454) | 0.3933 (+0.0683) | 0.5949 (+0.0943) | 0.5247 (+0.0693) |
0.4647 | 4200 | 0.2763 | - | - | - | - | - |
0.4868 | 4400 | 0.2834 | - | - | - | - | - |
0.5090 | 4600 | 0.2747 | - | - | - | - | - |
0.5311 | 4800 | 0.26 | - | - | - | - | - |
0.5532 | 5000 | 0.2594 | 0.7556 (+0.1643) | 0.5432 (+0.0028) | 0.3748 (+0.0497) | 0.6275 (+0.1268) | 0.5152 (+0.0598) |
0.5753 | 5200 | 0.273 | - | - | - | - | - |
0.5975 | 5400 | 0.2616 | - | - | - | - | - |
0.6196 | 5600 | 0.2573 | - | - | - | - | - |
0.6417 | 5800 | 0.2426 | - | - | - | - | - |
0.6639 | 6000 | 0.279 | 0.7605 (+0.1693) | 0.5431 (+0.0026) | 0.3907 (+0.0656) | 0.5926 (+0.0919) | 0.5088 (+0.0534) |
0.6860 | 6200 | 0.2519 | - | - | - | - | - |
0.7081 | 6400 | 0.2506 | - | - | - | - | - |
0.7303 | 6600 | 0.241 | - | - | - | - | - |
0.7524 | 6800 | 0.2373 | - | - | - | - | - |
0.7745 | 7000 | 0.2488 | 0.7641 (+0.1728) | 0.5753 (+0.0349) | 0.3897 (+0.0647) | 0.5988 (+0.0981) | 0.5213 (+0.0659) |
0.7966 | 7200 | 0.2462 | - | - | - | - | - |
0.8188 | 7400 | 0.2234 | - | - | - | - | - |
0.8409 | 7600 | 0.235 | - | - | - | - | - |
0.8630 | 7800 | 0.2209 | - | - | - | - | - |
0.8852 | 8000 | 0.2267 | 0.7695 (+0.1783) | 0.5509 (+0.0105) | 0.3849 (+0.0598) | 0.5975 (+0.0969) | 0.5111 (+0.0557) |
0.9073 | 8200 | 0.2322 | - | - | - | - | - |
0.9294 | 8400 | 0.2273 | - | - | - | - | - |
0.9515 | 8600 | 0.2111 | - | - | - | - | - |
0.9737 | 8800 | 0.2371 | - | - | - | - | - |
0.9958 | 9000 | 0.2328 | 0.7700 (+0.1787) | 0.5533 (+0.0129) | 0.3784 (+0.0534) | 0.5882 (+0.0875) | 0.5066 (+0.0513) |
-1 | -1 | - | 0.7700 (+0.1787) | 0.5533 (+0.0129) | 0.3784 (+0.0534) | 0.5882 (+0.0875) | 0.5066 (+0.0513) |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.5.0.dev0
- Transformers: 4.49.0
- PyTorch: 2.5.1+cu124
- Accelerate: 1.5.2
- Datasets: 2.21.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The HF Inference API does not support text-ranking models for sentence-transformers library.
Model tree for tomaarsen/reranker-ModernBERT-base-gooaq-bce-random
Base model
answerdotai/ModernBERT-baseEvaluation results
- Map on gooaq devself-reported0.729
- Mrr@10 on gooaq devself-reported0.727
- Ndcg@10 on gooaq devself-reported0.770
- Map on NanoMSMARCO R100self-reported0.472
- Mrr@10 on NanoMSMARCO R100self-reported0.465
- Ndcg@10 on NanoMSMARCO R100self-reported0.553
- Map on NanoNFCorpus R100self-reported0.342
- Mrr@10 on NanoNFCorpus R100self-reported0.555
- Ndcg@10 on NanoNFCorpus R100self-reported0.378
- Map on NanoNQ R100self-reported0.518