ModernBERT-base trained on GooAQ

This is a Cross Encoder model finetuned from answerdotai/ModernBERT-base using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.

Model Details

Model Description

  • Model Type: Cross Encoder
  • Base model: answerdotai/ModernBERT-base
  • Maximum Sequence Length: 8192 tokens
  • Number of Output Labels: 1 label
  • Language: en
  • License: apache-2.0

Model Sources

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import CrossEncoder

# Download from the 🤗 Hub
model = CrossEncoder("tomaarsen/reranker-ModernBERT-base-gooaq-bce-random")
# Get scores for pairs of texts
pairs = [
    ['is esurance a reputable company?', "Esurance auto insurance earned 4.5 stars out of 5 for overall performance. ... Based on these ratings, Esurance is among NerdWallet's Best Car Insurance Companies for 2020. Esurance offers all the usual coverage options, plus optional coverage including: Emergency roadside assistance."],
    ['is esurance a reputable company?', 'Coinsurance in property insurance is a means for insurers to obtain rate and premium equality. ... Rates are applied against a specified percentage (100, 90, or 80 percent, for example) of the value to the insured: building, contents, or business income.'],
    ['is esurance a reputable company?', 'Some employers offer both term life insurance coverage and supplemental life insurance. Term life insurance through your employer generally works like regular term life insurance. ... Supplemental life insurance is similar to a group term life insurance policy, but is typically more limited.'],
    ['is esurance a reputable company?', "Third party insurance is the legal minimum. This means you're covered if you have an accident causing damage or injury to any other person, vehicle, animal or property. It does not cover any other costs like repair to your own vehicle. You may want to use an insurance broker."],
    ['is esurance a reputable company?', 'In the United States, corporations have limited liability and the expression corporation is preferred to limited company. A "limited liability company" (LLC) is a different entity. However, some states permit corporations to have the designation Ltd. (instead of the usual Inc.) to signify their corporate status.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)

# Or rank different texts based on similarity to a single text
ranks = model.rank(
    'is esurance a reputable company?',
    [
        "Esurance auto insurance earned 4.5 stars out of 5 for overall performance. ... Based on these ratings, Esurance is among NerdWallet's Best Car Insurance Companies for 2020. Esurance offers all the usual coverage options, plus optional coverage including: Emergency roadside assistance.",
        'Coinsurance in property insurance is a means for insurers to obtain rate and premium equality. ... Rates are applied against a specified percentage (100, 90, or 80 percent, for example) of the value to the insured: building, contents, or business income.',
        'Some employers offer both term life insurance coverage and supplemental life insurance. Term life insurance through your employer generally works like regular term life insurance. ... Supplemental life insurance is similar to a group term life insurance policy, but is typically more limited.',
        "Third party insurance is the legal minimum. This means you're covered if you have an accident causing damage or injury to any other person, vehicle, animal or property. It does not cover any other costs like repair to your own vehicle. You may want to use an insurance broker.",
        'In the United States, corporations have limited liability and the expression corporation is preferred to limited company. A "limited liability company" (LLC) is a different entity. However, some states permit corporations to have the designation Ltd. (instead of the usual Inc.) to signify their corporate status.',
    ]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]

Evaluation

Metrics

Cross Encoder Reranking

Metric Value
map 0.7285 (+0.1974)
mrr@10 0.7270 (+0.2030)
ndcg@10 0.7700 (+0.1787)

Cross Encoder Reranking

  • Datasets: NanoMSMARCO_R100, NanoNFCorpus_R100 and NanoNQ_R100
  • Evaluated with CrossEncoderRerankingEvaluator with these parameters:
    {
        "at_k": 10,
        "always_rerank_positives": true
    }
    
Metric NanoMSMARCO_R100 NanoNFCorpus_R100 NanoNQ_R100
map 0.4718 (-0.0178) 0.3424 (+0.0814) 0.5178 (+0.0982)
mrr@10 0.4647 (-0.0128) 0.5554 (+0.0555) 0.5159 (+0.0892)
ndcg@10 0.5533 (+0.0129) 0.3784 (+0.0534) 0.5882 (+0.0875)

Cross Encoder Nano BEIR

  • Dataset: NanoBEIR_R100_mean
  • Evaluated with CrossEncoderNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ],
        "rerank_k": 100,
        "at_k": 10,
        "always_rerank_positives": true
    }
    
Metric Value
map 0.4440 (+0.0539)
mrr@10 0.5120 (+0.0440)
ndcg@10 0.5066 (+0.0513)

Training Details

Training Dataset

Unnamed Dataset

  • Size: 578,402 training samples
  • Columns: question, answer, and label
  • Approximate statistics based on the first 1000 samples:
    question answer label
    type string string int
    details
    • min: 21 characters
    • mean: 44.5 characters
    • max: 101 characters
    • min: 54 characters
    • mean: 253.36 characters
    • max: 397 characters
    • 0: ~83.00%
    • 1: ~17.00%
  • Samples:
    question answer label
    is esurance a reputable company? Esurance auto insurance earned 4.5 stars out of 5 for overall performance. ... Based on these ratings, Esurance is among NerdWallet's Best Car Insurance Companies for 2020. Esurance offers all the usual coverage options, plus optional coverage including: Emergency roadside assistance. 1
    is esurance a reputable company? Coinsurance in property insurance is a means for insurers to obtain rate and premium equality. ... Rates are applied against a specified percentage (100, 90, or 80 percent, for example) of the value to the insured: building, contents, or business income. 0
    is esurance a reputable company? Some employers offer both term life insurance coverage and supplemental life insurance. Term life insurance through your employer generally works like regular term life insurance. ... Supplemental life insurance is similar to a group term life insurance policy, but is typically more limited. 0
  • Loss: BinaryCrossEntropyLoss with these parameters:
    {
        "activation_fct": "torch.nn.modules.linear.Identity",
        "pos_weight": 5
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • seed: 12
  • bf16: True
  • dataloader_num_workers: 4
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 12
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 4
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss gooaq-dev_ndcg@10 NanoMSMARCO_R100_ndcg@10 NanoNFCorpus_R100_ndcg@10 NanoNQ_R100_ndcg@10 NanoBEIR_R100_mean_ndcg@10
-1 -1 - 0.1307 (-0.4605) 0.0867 (-0.4537) 0.3025 (-0.0226) 0.0200 (-0.4806) 0.1364 (-0.3190)
0.0001 1 1.1444 - - - - -
0.0221 200 1.182 - - - - -
0.0443 400 0.9767 - - - - -
0.0664 600 0.5736 - - - - -
0.0885 800 0.4752 - - - - -
0.1106 1000 0.4281 0.7180 (+0.1268) 0.4989 (-0.0415) 0.3655 (+0.0405) 0.5535 (+0.0529) 0.4726 (+0.0173)
0.1328 1200 0.3803 - - - - -
0.1549 1400 0.3646 - - - - -
0.1770 1600 0.3535 - - - - -
0.1992 1800 0.3498 - - - - -
0.2213 2000 0.3237 0.7328 (+0.1416) 0.5173 (-0.0231) 0.3619 (+0.0368) 0.6429 (+0.1423) 0.5074 (+0.0520)
0.2434 2200 0.3199 - - - - -
0.2655 2400 0.3196 - - - - -
0.2877 2600 0.317 - - - - -
0.3098 2800 0.3134 - - - - -
0.3319 3000 0.2915 0.7501 (+0.1589) 0.5589 (+0.0184) 0.3926 (+0.0676) 0.5667 (+0.0660) 0.5060 (+0.0507)
0.3541 3200 0.3022 - - - - -
0.3762 3400 0.2847 - - - - -
0.3983 3600 0.2903 - - - - -
0.4204 3800 0.2882 - - - - -
0.4426 4000 0.2916 0.7516 (+0.1604) 0.5858 (+0.0454) 0.3933 (+0.0683) 0.5949 (+0.0943) 0.5247 (+0.0693)
0.4647 4200 0.2763 - - - - -
0.4868 4400 0.2834 - - - - -
0.5090 4600 0.2747 - - - - -
0.5311 4800 0.26 - - - - -
0.5532 5000 0.2594 0.7556 (+0.1643) 0.5432 (+0.0028) 0.3748 (+0.0497) 0.6275 (+0.1268) 0.5152 (+0.0598)
0.5753 5200 0.273 - - - - -
0.5975 5400 0.2616 - - - - -
0.6196 5600 0.2573 - - - - -
0.6417 5800 0.2426 - - - - -
0.6639 6000 0.279 0.7605 (+0.1693) 0.5431 (+0.0026) 0.3907 (+0.0656) 0.5926 (+0.0919) 0.5088 (+0.0534)
0.6860 6200 0.2519 - - - - -
0.7081 6400 0.2506 - - - - -
0.7303 6600 0.241 - - - - -
0.7524 6800 0.2373 - - - - -
0.7745 7000 0.2488 0.7641 (+0.1728) 0.5753 (+0.0349) 0.3897 (+0.0647) 0.5988 (+0.0981) 0.5213 (+0.0659)
0.7966 7200 0.2462 - - - - -
0.8188 7400 0.2234 - - - - -
0.8409 7600 0.235 - - - - -
0.8630 7800 0.2209 - - - - -
0.8852 8000 0.2267 0.7695 (+0.1783) 0.5509 (+0.0105) 0.3849 (+0.0598) 0.5975 (+0.0969) 0.5111 (+0.0557)
0.9073 8200 0.2322 - - - - -
0.9294 8400 0.2273 - - - - -
0.9515 8600 0.2111 - - - - -
0.9737 8800 0.2371 - - - - -
0.9958 9000 0.2328 0.7700 (+0.1787) 0.5533 (+0.0129) 0.3784 (+0.0534) 0.5882 (+0.0875) 0.5066 (+0.0513)
-1 -1 - 0.7700 (+0.1787) 0.5533 (+0.0129) 0.3784 (+0.0534) 0.5882 (+0.0875) 0.5066 (+0.0513)
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.10
  • Sentence Transformers: 3.5.0.dev0
  • Transformers: 4.49.0
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.5.2
  • Datasets: 2.21.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
2
Safetensors
Model size
150M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support text-ranking models for sentence-transformers library.

Model tree for tomaarsen/reranker-ModernBERT-base-gooaq-bce-random

Finetuned
(449)
this model

Evaluation results