tomaarsen's picture
tomaarsen HF Staff
Add new CrossEncoder model
bb66f45 verified
|
raw
history blame
25.6 kB
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - cross-encoder
  - generated_from_trainer
  - dataset_size:482388
  - loss:BinaryCrossEntropyLoss
base_model: answerdotai/ModernBERT-base
pipeline_tag: text-ranking
library_name: sentence-transformers
metrics:
  - map
  - mrr@10
  - ndcg@10
model-index:
  - name: ModernBERT-base trained on GooAQ
    results:
      - task:
          type: cross-encoder-reranking
          name: Cross Encoder Reranking
        dataset:
          name: gooaq dev
          type: gooaq-dev
        metrics:
          - type: map
            value: 0.7089
            name: Map
          - type: mrr@10
            value: 0.7076
            name: Mrr@10
          - type: ndcg@10
            value: 0.755
            name: Ndcg@10
      - task:
          type: cross-encoder-reranking
          name: Cross Encoder Reranking
        dataset:
          name: NanoMSMARCO R100
          type: NanoMSMARCO_R100
        metrics:
          - type: map
            value: 0.554
            name: Map
          - type: mrr@10
            value: 0.5472
            name: Mrr@10
          - type: ndcg@10
            value: 0.6229
            name: Ndcg@10
      - task:
          type: cross-encoder-reranking
          name: Cross Encoder Reranking
        dataset:
          name: NanoNFCorpus R100
          type: NanoNFCorpus_R100
        metrics:
          - type: map
            value: 0.3421
            name: Map
          - type: mrr@10
            value: 0.5284
            name: Mrr@10
          - type: ndcg@10
            value: 0.3792
            name: Ndcg@10
      - task:
          type: cross-encoder-reranking
          name: Cross Encoder Reranking
        dataset:
          name: NanoNQ R100
          type: NanoNQ_R100
        metrics:
          - type: map
            value: 0.6312
            name: Map
          - type: mrr@10
            value: 0.638
            name: Mrr@10
          - type: ndcg@10
            value: 0.6915
            name: Ndcg@10
      - task:
          type: cross-encoder-nano-beir
          name: Cross Encoder Nano BEIR
        dataset:
          name: NanoBEIR R100 mean
          type: NanoBEIR_R100_mean
        metrics:
          - type: map
            value: 0.5091
            name: Map
          - type: mrr@10
            value: 0.5712
            name: Mrr@10
          - type: ndcg@10
            value: 0.5645
            name: Ndcg@10

ModernBERT-base trained on GooAQ

This is a Cross Encoder model finetuned from answerdotai/ModernBERT-base using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.

Model Details

Model Description

  • Model Type: Cross Encoder
  • Base model: answerdotai/ModernBERT-base
  • Maximum Sequence Length: 8192 tokens
  • Number of Output Labels: 1 label
  • Language: en
  • License: apache-2.0

Model Sources

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import CrossEncoder

# Download from the 🤗 Hub
model = CrossEncoder("tomaarsen/reranker-ModernBERT-base-gooaq-bce-soft-negs")
# Get scores for pairs of texts
pairs = [
    ['what is the difference between ground level ozone and the ozone layer?', 'Here, ground-level or "bad" ozone is an air pollutant that is harmful to breathe and it damages crops, trees and other vegetation. ... The stratosphere or "good" ozone layer extends upward from about 6 to 30 miles and protects life on Earth from the sun\'s harmful ultraviolet (UV) rays.'],
    ['what is the difference between ground level ozone and the ozone layer?', 'In the stratosphere, temperature increases with altitude. The reason is that the direct heat source for the stratosphere is the Sun. A layer of ozone molecules absorbs solar radiation, which heats the stratosphere.'],
    ['what is the difference between ground level ozone and the ozone layer?', "Atmosphere layers. Earth's atmosphere is divided into five main layers: the exosphere, the thermosphere, the mesosphere, the stratosphere and the troposphere. ... Ozone is abundant here and it heats the atmosphere while also absorbing harmful radiation from the sun."],
    ['what is the difference between ground level ozone and the ozone layer?', "['Water vapor (H. 2O)', 'Carbon dioxide (CO. ... ', 'Methane (CH. ... ', 'Nitrous oxide (N. 2O)', 'Ozone (O. ... ', 'Chlorofluorocarbons (CFCs)', 'Hydrofluorocarbons (includes HCFCs and HFCs)']"],
    ['what is the difference between ground level ozone and the ozone layer?', "Gases in the atmosphere, such as carbon dioxide, trap heat just like the glass roof of a greenhouse. These heat-trapping gases are called greenhouse gases. During the day, the Sun shines through the atmosphere. Earth's surface warms up in the sunlight."],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)

# Or rank different texts based on similarity to a single text
ranks = model.rank(
    'what is the difference between ground level ozone and the ozone layer?',
    [
        'Here, ground-level or "bad" ozone is an air pollutant that is harmful to breathe and it damages crops, trees and other vegetation. ... The stratosphere or "good" ozone layer extends upward from about 6 to 30 miles and protects life on Earth from the sun\'s harmful ultraviolet (UV) rays.',
        'In the stratosphere, temperature increases with altitude. The reason is that the direct heat source for the stratosphere is the Sun. A layer of ozone molecules absorbs solar radiation, which heats the stratosphere.',
        "Atmosphere layers. Earth's atmosphere is divided into five main layers: the exosphere, the thermosphere, the mesosphere, the stratosphere and the troposphere. ... Ozone is abundant here and it heats the atmosphere while also absorbing harmful radiation from the sun.",
        "['Water vapor (H. 2O)', 'Carbon dioxide (CO. ... ', 'Methane (CH. ... ', 'Nitrous oxide (N. 2O)', 'Ozone (O. ... ', 'Chlorofluorocarbons (CFCs)', 'Hydrofluorocarbons (includes HCFCs and HFCs)']",
        "Gases in the atmosphere, such as carbon dioxide, trap heat just like the glass roof of a greenhouse. These heat-trapping gases are called greenhouse gases. During the day, the Sun shines through the atmosphere. Earth's surface warms up in the sunlight.",
    ]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]

Evaluation

Metrics

Cross Encoder Reranking

Metric Value
map 0.7089 (+0.1778)
mrr@10 0.7076 (+0.1836)
ndcg@10 0.7550 (+0.1637)

Cross Encoder Reranking

  • Datasets: NanoMSMARCO_R100, NanoNFCorpus_R100 and NanoNQ_R100
  • Evaluated with CrossEncoderRerankingEvaluator with these parameters:
    {
        "at_k": 10,
        "always_rerank_positives": true
    }
    
Metric NanoMSMARCO_R100 NanoNFCorpus_R100 NanoNQ_R100
map 0.5540 (+0.0644) 0.3421 (+0.0811) 0.6312 (+0.2116)
mrr@10 0.5472 (+0.0697) 0.5284 (+0.0286) 0.6380 (+0.2113)
ndcg@10 0.6229 (+0.0825) 0.3792 (+0.0541) 0.6915 (+0.1908)

Cross Encoder Nano BEIR

  • Dataset: NanoBEIR_R100_mean
  • Evaluated with CrossEncoderNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ],
        "rerank_k": 100,
        "at_k": 10,
        "always_rerank_positives": true
    }
    
Metric Value
map 0.5091 (+0.1190)
mrr@10 0.5712 (+0.1032)
ndcg@10 0.5645 (+0.1092)

Training Details

Training Dataset

Unnamed Dataset

  • Size: 482,388 training samples
  • Columns: question, answer, and label
  • Approximate statistics based on the first 1000 samples:
    question answer label
    type string string int
    details
    • min: 17 characters
    • mean: 43.7 characters
    • max: 91 characters
    • min: 53 characters
    • mean: 250.44 characters
    • max: 393 characters
    • 0: ~79.30%
    • 1: ~20.70%
  • Samples:
    question answer label
    what is the difference between ground level ozone and the ozone layer? Here, ground-level or "bad" ozone is an air pollutant that is harmful to breathe and it damages crops, trees and other vegetation. ... The stratosphere or "good" ozone layer extends upward from about 6 to 30 miles and protects life on Earth from the sun's harmful ultraviolet (UV) rays. 1
    what is the difference between ground level ozone and the ozone layer? In the stratosphere, temperature increases with altitude. The reason is that the direct heat source for the stratosphere is the Sun. A layer of ozone molecules absorbs solar radiation, which heats the stratosphere. 0
    what is the difference between ground level ozone and the ozone layer? Atmosphere layers. Earth's atmosphere is divided into five main layers: the exosphere, the thermosphere, the mesosphere, the stratosphere and the troposphere. ... Ozone is abundant here and it heats the atmosphere while also absorbing harmful radiation from the sun. 0
  • Loss: BinaryCrossEntropyLoss with these parameters:
    {
        "activation_fct": "torch.nn.modules.linear.Identity",
        "pos_weight": 5
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • seed: 12
  • bf16: True
  • dataloader_num_workers: 4
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 12
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 4
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss gooaq-dev_ndcg@10 NanoMSMARCO_R100_ndcg@10 NanoNFCorpus_R100_ndcg@10 NanoNQ_R100_ndcg@10 NanoBEIR_R100_mean_ndcg@10
-1 -1 - 0.1488 (-0.4424) 0.0573 (-0.4832) 0.2647 (-0.0604) 0.0388 (-0.4619) 0.1202 (-0.3351)
0.0001 1 1.3143 - - - - -
0.0265 200 1.2539 - - - - -
0.0531 400 0.9497 - - - - -
0.0796 600 0.5613 - - - - -
0.1061 800 0.4687 - - - - -
0.1327 1000 0.4042 0.7103 (+0.1191) 0.5262 (-0.0142) 0.3298 (+0.0048) 0.5589 (+0.0583) 0.4717 (+0.0163)
0.1592 1200 0.3562 - - - - -
0.1857 1400 0.3543 - - - - -
0.2123 1600 0.3467 - - - - -
0.2388 1800 0.3153 - - - - -
0.2653 2000 0.3033 0.7317 (+0.1405) 0.5662 (+0.0258) 0.3859 (+0.0609) 0.6828 (+0.1822) 0.5450 (+0.0896)
0.2919 2200 0.2986 - - - - -
0.3184 2400 0.3016 - - - - -
0.3449 2600 0.2984 - - - - -
0.3715 2800 0.2646 - - - - -
0.3980 3000 0.3048 0.7359 (+0.1447) 0.5713 (+0.0309) 0.3987 (+0.0736) 0.6960 (+0.1953) 0.5553 (+0.1000)
0.4245 3200 0.2714 - - - - -
0.4510 3400 0.2773 - - - - -
0.4776 3600 0.2621 - - - - -
0.5041 3800 0.2529 - - - - -
0.5306 4000 0.2533 0.7459 (+0.1546) 0.5893 (+0.0489) 0.3887 (+0.0637) 0.6749 (+0.1743) 0.5510 (+0.0956)
0.5572 4200 0.2822 - - - - -
0.5837 4400 0.2299 - - - - -
0.6102 4600 0.2554 - - - - -
0.6368 4800 0.2373 - - - - -
0.6633 5000 0.2248 0.7497 (+0.1584) 0.6110 (+0.0706) 0.3782 (+0.0531) 0.6885 (+0.1878) 0.5592 (+0.1038)
0.6898 5200 0.2315 - - - - -
0.7164 5400 0.2313 - - - - -
0.7429 5600 0.2294 - - - - -
0.7694 5800 0.2384 - - - - -
0.7960 6000 0.2195 0.7530 (+0.1617) 0.6249 (+0.0845) 0.3873 (+0.0623) 0.6773 (+0.1766) 0.5632 (+0.1078)
0.8225 6200 0.2047 - - - - -
0.8490 6400 0.2192 - - - - -
0.8756 6600 0.1926 - - - - -
0.9021 6800 0.2185 - - - - -
0.9286 7000 0.2365 0.7550 (+0.1637) 0.6229 (+0.0825) 0.3792 (+0.0541) 0.6915 (+0.1908) 0.5645 (+0.1092)
0.9552 7200 0.2173 - - - - -
0.9817 7400 0.2249 - - - - -
-1 -1 - 0.7550 (+0.1637) 0.6229 (+0.0825) 0.3792 (+0.0541) 0.6915 (+0.1908) 0.5645 (+0.1092)
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.10
  • Sentence Transformers: 3.5.0.dev0
  • Transformers: 4.49.0
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.5.2
  • Datasets: 2.21.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}