CrossEncoder based on distilbert/distilroberta-base
This is a Cross Encoder model finetuned from distilbert/distilroberta-base on the stsb dataset using the sentence-transformers library. It computes scores for pairs of texts, which can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Cross Encoder
- Base model: distilbert/distilroberta-base
- Maximum Sequence Length: 514 tokens
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Cross Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Cross Encoders on Hugging Face
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
# Download from the 🤗 Hub
model = CrossEncoder("tomaarsen/reranker-distilroberta-base-stsb")
# Get scores for pairs...
pairs = [
['A man with a hard hat is dancing.', 'A man wearing a hard hat is dancing.'],
['A young child is riding a horse.', 'A child is riding a horse.'],
['A man is feeding a mouse to a snake.', 'The man is feeding a mouse to the snake.'],
['A woman is playing the guitar.', 'A man is playing guitar.'],
['A woman is playing the flute.', 'A man is playing a flute.'],
]
scores = model.predict(pairs)
print(scores.shape)
# [5]
# ... or rank different texts based on similarity to a single text
ranks = model.rank(
'A man with a hard hat is dancing.',
[
'A man wearing a hard hat is dancing.',
'A child is riding a horse.',
'The man is feeding a mouse to the snake.',
'A man is playing guitar.',
'A man is playing a flute.',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
Evaluation
Metrics
Cross Encoder Correlation
- Datasets:
stsb-validationandstsb-test - Evaluated with
CECorrelationEvaluator
| Metric | stsb-validation | stsb-test |
|---|---|---|
| pearson | 0.8773 | 0.8503 |
| spearman | 0.8754 | 0.8389 |
Training Details
Training Dataset
stsb
- Dataset: stsb at ab7a5ac
- Size: 5,749 training samples
- Columns:
sentence1,sentence2, andscore - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 16 characters
- mean: 31.92 characters
- max: 113 characters
- min: 16 characters
- mean: 31.51 characters
- max: 94 characters
- min: 0.0
- mean: 0.45
- max: 1.0
- Samples:
sentence1 sentence2 score A plane is taking off.An air plane is taking off.1.0A man is playing a large flute.A man is playing a flute.0.76A man is spreading shreded cheese on a pizza.A man is spreading shredded cheese on an uncooked pizza.0.76 - Loss:
BinaryCrossEntropyLoss
Evaluation Dataset
stsb
- Dataset: stsb at ab7a5ac
- Size: 1,500 evaluation samples
- Columns:
sentence1,sentence2, andscore - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 12 characters
- mean: 57.37 characters
- max: 144 characters
- min: 17 characters
- mean: 56.84 characters
- max: 141 characters
- min: 0.0
- mean: 0.42
- max: 1.0
- Samples:
sentence1 sentence2 score A man with a hard hat is dancing.A man wearing a hard hat is dancing.1.0A young child is riding a horse.A child is riding a horse.0.95A man is feeding a mouse to a snake.The man is feeding a mouse to the snake.1.0 - Loss:
BinaryCrossEntropyLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 64per_device_eval_batch_size: 64num_train_epochs: 4warmup_ratio: 0.1bf16: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 64per_device_eval_batch_size: 64per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 4max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss | stsb-validation_spearman | stsb-test_spearman |
|---|---|---|---|---|---|
| -1 | -1 | - | - | -0.0150 | - |
| 0.2222 | 20 | 0.6905 | - | - | - |
| 0.4444 | 40 | 0.6548 | - | - | - |
| 0.6667 | 60 | 0.5906 | - | - | - |
| 0.8889 | 80 | 0.5631 | 0.5475 | 0.8589 | - |
| 1.1111 | 100 | 0.5517 | - | - | - |
| 1.3333 | 120 | 0.5473 | - | - | - |
| 1.5556 | 140 | 0.5454 | - | - | - |
| 1.7778 | 160 | 0.5402 | 0.5346 | 0.8760 | - |
| 2.0 | 180 | 0.542 | - | - | - |
| 2.2222 | 200 | 0.5229 | - | - | - |
| 2.4444 | 220 | 0.524 | - | - | - |
| 2.6667 | 240 | 0.5286 | 0.5373 | 0.8744 | - |
| 2.8889 | 260 | 0.5236 | - | - | - |
| 3.1111 | 280 | 0.5269 | - | - | - |
| 3.3333 | 300 | 0.5209 | - | - | - |
| 3.5556 | 320 | 0.5115 | 0.5409 | 0.8754 | - |
| 3.7778 | 340 | 0.5149 | - | - | - |
| 4.0 | 360 | 0.5084 | - | - | - |
| -1 | -1 | - | - | - | 0.8389 |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.007 kWh
- Carbon Emitted: 0.003 kg of CO2
- Hours Used: 0.031 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.5.0.dev0
- Transformers: 4.49.0.dev0
- PyTorch: 2.5.0+cu121
- Accelerate: 1.3.0
- Datasets: 2.20.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 1
Model tree for tomaarsen/reranker-distilroberta-base-stsb
Base model
distilbert/distilroberta-baseDataset used to train tomaarsen/reranker-distilroberta-base-stsb
Evaluation results
- Pearson on stsb validationself-reported0.877
- Spearman on stsb validationself-reported0.875
- Pearson on stsb testself-reported0.850
- Spearman on stsb testself-reported0.839