splade-distilbert-base-uncased trained on GooAQ
This is a SPLADE Sparse Encoder model finetuned from distilbert/distilbert-base-uncased on the gooaq dataset using the sentence-transformers library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
Model Details
Model Description
- Model Type: SPLADE Sparse Encoder
- Base model: distilbert/distilbert-base-uncased
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 30522 dimensions
- Similarity Function: Dot Product
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Sparse Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sparse Encoders on Hugging Face
Full Model Architecture
SparseEncoder(
(0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/splade-distilbert-base-uncased-gooaq")
# Run inference
sentences = [
'what is the difference between 18 and 20 inch tires?',
'The only real difference is a 20" rim would be more likely to be damaged, as you pointed out. Beyond looks, there is zero benefit for the 20" rim. Also, just the availability of tires will likely be much more limited for the larger rim. ... Tire selection is better for 18" wheels than 20" wheels.',
'So extracurricular activities are just activities that you do outside of class. The Common App says that extracurricular activities "include arts, athletics, clubs, employment, personal commitments, and other pursuits."',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# (3, 30522)
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Sparse Information Retrieval
- Datasets:
NanoClimateFEVER
,NanoDBPedia
,NanoFEVER
,NanoFiQA2018
,NanoHotpotQA
,NanoMSMARCO
,NanoNFCorpus
,NanoNQ
,NanoQuoraRetrieval
,NanoSCIDOCS
,NanoArguAna
,NanoSciFact
andNanoTouche2020
- Evaluated with
SparseInformationRetrievalEvaluator
Metric | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
dot_accuracy@1 | 0.22 | 0.52 | 0.68 | 0.34 | 0.74 | 0.26 | 0.4 | 0.38 | 0.82 | 0.38 | 0.1 | 0.54 | 0.6531 |
dot_accuracy@3 | 0.38 | 0.68 | 0.9 | 0.6 | 0.9 | 0.42 | 0.56 | 0.6 | 0.96 | 0.56 | 0.48 | 0.66 | 0.898 |
dot_accuracy@5 | 0.48 | 0.72 | 0.92 | 0.6 | 0.92 | 0.56 | 0.62 | 0.7 | 0.96 | 0.62 | 0.58 | 0.72 | 0.898 |
dot_accuracy@10 | 0.54 | 0.86 | 0.94 | 0.68 | 0.96 | 0.78 | 0.66 | 0.82 | 1.0 | 0.76 | 0.72 | 0.78 | 0.9796 |
dot_precision@1 | 0.22 | 0.52 | 0.68 | 0.34 | 0.74 | 0.26 | 0.4 | 0.38 | 0.82 | 0.38 | 0.1 | 0.54 | 0.6531 |
dot_precision@3 | 0.1333 | 0.4267 | 0.3067 | 0.2733 | 0.4467 | 0.14 | 0.34 | 0.2133 | 0.3733 | 0.24 | 0.16 | 0.2333 | 0.6327 |
dot_precision@5 | 0.108 | 0.396 | 0.188 | 0.192 | 0.3 | 0.112 | 0.316 | 0.148 | 0.236 | 0.188 | 0.116 | 0.156 | 0.5347 |
dot_precision@10 | 0.066 | 0.36 | 0.1 | 0.12 | 0.158 | 0.078 | 0.25 | 0.086 | 0.132 | 0.148 | 0.072 | 0.088 | 0.4612 |
dot_recall@1 | 0.1167 | 0.0417 | 0.6567 | 0.1459 | 0.37 | 0.26 | 0.0237 | 0.36 | 0.734 | 0.0807 | 0.1 | 0.505 | 0.0452 |
dot_recall@3 | 0.1707 | 0.1169 | 0.8567 | 0.3665 | 0.67 | 0.42 | 0.0767 | 0.57 | 0.9113 | 0.1497 | 0.48 | 0.635 | 0.1317 |
dot_recall@5 | 0.2157 | 0.1515 | 0.8767 | 0.3961 | 0.75 | 0.56 | 0.0965 | 0.66 | 0.922 | 0.1947 | 0.58 | 0.69 | 0.1831 |
dot_recall@10 | 0.254 | 0.2449 | 0.9167 | 0.5118 | 0.79 | 0.78 | 0.1197 | 0.77 | 0.9833 | 0.3037 | 0.72 | 0.77 | 0.2997 |
dot_ndcg@10 | 0.2262 | 0.4348 | 0.8076 | 0.403 | 0.7355 | 0.4857 | 0.3007 | 0.5619 | 0.9062 | 0.2913 | 0.4188 | 0.6443 | 0.5207 |
dot_mrr@10 | 0.3172 | 0.6113 | 0.7872 | 0.4699 | 0.8237 | 0.3958 | 0.4807 | 0.5104 | 0.8922 | 0.4865 | 0.3219 | 0.616 | 0.7655 |
dot_map@100 | 0.1814 | 0.3308 | 0.7674 | 0.3255 | 0.6711 | 0.4043 | 0.13 | 0.4968 | 0.8722 | 0.2168 | 0.3358 | 0.6035 | 0.3842 |
Sparse Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
SparseNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "climatefever", "dbpedia", "fever", "fiqa2018", "hotpotqa", "msmarco", "nfcorpus", "nq", "quoraretrieval", "scidocs", "arguana", "scifact", "touche2020" ] }
Metric | Value |
---|---|
dot_accuracy@1 | 0.4641 |
dot_accuracy@3 | 0.6614 |
dot_accuracy@5 | 0.7152 |
dot_accuracy@10 | 0.8061 |
dot_precision@1 | 0.4641 |
dot_precision@3 | 0.3015 |
dot_precision@5 | 0.2301 |
dot_precision@10 | 0.163 |
dot_recall@1 | 0.2646 |
dot_recall@3 | 0.4273 |
dot_recall@5 | 0.4828 |
dot_recall@10 | 0.5741 |
dot_ndcg@10 | 0.5182 |
dot_mrr@10 | 0.5753 |
dot_map@100 | 0.44 |
Training Details
Training Dataset
gooaq
- Dataset: gooaq at b089f72
- Size: 3,011,496 training samples
- Columns:
question
andanswer
- Approximate statistics based on the first 1000 samples:
question answer type string string details - min: 18 characters
- mean: 43.42 characters
- max: 96 characters
- min: 54 characters
- mean: 252.96 characters
- max: 426 characters
- Samples:
question answer what is the difference between clay and mud mask?
The main difference between the two is that mud is a skin-healing agent, while clay is a cosmetic, drying agent. Clay masks are most useful for someone who has oily skin and is prone to breakouts of acne and blemishes.
myki how much on card?
A full fare myki card costs $6 and a concession, seniors or child myki costs $3. For more information about how to use your myki, visit ptv.vic.gov.au or call 1800 800 007.
how to find out if someone blocked your phone number on iphone?
If you get a notification like "Message Not Delivered" or you get no notification at all, that's a sign of a potential block. Next, you could try calling the person. If the call goes right to voicemail or rings once (or a half ring) then goes to voicemail, that's further evidence you may have been blocked.
- Loss:
SpladeLoss
with these parameters:{'loss': SparseMultipleNegativesRankingLoss( (model): SparseEncoder( (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None}) ) (cross_entropy_loss): CrossEntropyLoss() ), 'lambda_corpus': 3e-05, 'lambda_query': 5e-05, 'corpus_regularizer': FlopsLoss( (model): SparseEncoder( (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None}) ) ), 'query_regularizer': FlopsLoss( (model): SparseEncoder( (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None}) ) )}
Evaluation Dataset
gooaq
- Dataset: gooaq at b089f72
- Size: 1,000 evaluation samples
- Columns:
question
andanswer
- Approximate statistics based on the first 1000 samples:
question answer type string string details - min: 18 characters
- mean: 43.17 characters
- max: 98 characters
- min: 51 characters
- mean: 254.12 characters
- max: 360 characters
- Samples:
question answer how do i program my directv remote with my tv?
['Press MENU on your remote.', 'Select Settings & Help > Settings > Remote Control > Program Remote.', 'Choose the device (TV, audio, DVD) you wish to program. ... ', 'Follow the on-screen prompts to complete programming.']
are rodrigues fruit bats nocturnal?
Before its numbers were threatened by habitat destruction, storms, and hunting, some of those groups could number 500 or more members. Sunrise, sunset. Rodrigues fruit bats are most active at dawn, at dusk, and at night.
why does your heart rate increase during exercise bbc bitesize?
During exercise there is an increase in physical activity and muscle cells respire more than they do when the body is at rest. The heart rate increases during exercise. The rate and depth of breathing increases - this makes sure that more oxygen is absorbed into the blood, and more carbon dioxide is removed from it.
- Loss:
SpladeLoss
with these parameters:{'loss': SparseMultipleNegativesRankingLoss( (model): SparseEncoder( (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None}) ) (cross_entropy_loss): CrossEntropyLoss() ), 'lambda_corpus': 3e-05, 'lambda_query': 5e-05, 'corpus_regularizer': FlopsLoss( (model): SparseEncoder( (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None}) ) ), 'query_regularizer': FlopsLoss( (model): SparseEncoder( (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None}) ) )}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32learning_rate
: 2e-05num_train_epochs
: 1bf16
: Trueload_best_model_at_end
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | NanoClimateFEVER_dot_ndcg@10 | NanoDBPedia_dot_ndcg@10 | NanoFEVER_dot_ndcg@10 | NanoFiQA2018_dot_ndcg@10 | NanoHotpotQA_dot_ndcg@10 | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoQuoraRetrieval_dot_ndcg@10 | NanoSCIDOCS_dot_ndcg@10 | NanoArguAna_dot_ndcg@10 | NanoSciFact_dot_ndcg@10 | NanoTouche2020_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0213 | 2000 | 0.75 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0425 | 4000 | 0.071 | 0.0924 | 0.1931 | 0.2903 | 0.5966 | 0.3079 | 0.6182 | 0.3378 | 0.1867 | 0.3781 | 0.3784 | 0.1966 | 0.2325 | 0.4148 | 0.5139 | 0.3573 |
0.0638 | 6000 | 0.0578 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0850 | 8000 | 0.0511 | 0.0589 | 0.1826 | 0.2911 | 0.5719 | 0.3820 | 0.6818 | 0.2417 | 0.2032 | 0.2925 | 0.4541 | 0.2090 | 0.2306 | 0.5240 | 0.5183 | 0.3679 |
0.1063 | 10000 | 0.0464 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1275 | 12000 | 0.0458 | 0.0795 | 0.1978 | 0.2958 | 0.6206 | 0.3664 | 0.6673 | 0.2691 | 0.1872 | 0.2327 | 0.6770 | 0.2008 | 0.3288 | 0.5384 | 0.5017 | 0.3911 |
0.1488 | 14000 | 0.0427 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1700 | 16000 | 0.0392 | 0.0581 | 0.2785 | 0.4104 | 0.8125 | 0.3832 | 0.7265 | 0.5093 | 0.2688 | 0.6075 | 0.7879 | 0.2760 | 0.3342 | 0.5722 | 0.5301 | 0.4998 |
0.1913 | 18000 | 0.039 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2125 | 20000 | 0.0366 | 0.0472 | 0.2319 | 0.3466 | 0.7349 | 0.3774 | 0.7174 | 0.4061 | 0.2189 | 0.4166 | 0.7486 | 0.2364 | 0.3560 | 0.5907 | 0.5211 | 0.4541 |
0.2338 | 22000 | 0.0312 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2550 | 24000 | 0.0322 | 0.0543 | 0.2169 | 0.4469 | 0.7618 | 0.4014 | 0.6831 | 0.4412 | 0.2707 | 0.5253 | 0.8104 | 0.2621 | 0.3581 | 0.6006 | 0.5037 | 0.4832 |
0.2763 | 26000 | 0.0292 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2975 | 28000 | 0.03 | 0.0529 | 0.2257 | 0.5070 | 0.7976 | 0.4014 | 0.7442 | 0.5165 | 0.3216 | 0.5799 | 0.8483 | 0.3318 | 0.3206 | 0.5665 | 0.5149 | 0.5135 |
0.3188 | 30000 | 0.0294 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3400 | 32000 | 0.0291 | 0.0512 | 0.1754 | 0.4539 | 0.8196 | 0.3903 | 0.7372 | 0.4689 | 0.2948 | 0.5548 | 0.8643 | 0.2791 | 0.4040 | 0.5229 | 0.5055 | 0.4977 |
0.3613 | 34000 | 0.0284 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3825 | 36000 | 0.0268 | 0.0404 | 0.2566 | 0.4462 | 0.8142 | 0.3737 | 0.7281 | 0.4418 | 0.2568 | 0.5135 | 0.8305 | 0.2749 | 0.3775 | 0.5485 | 0.5228 | 0.4912 |
0.4038 | 38000 | 0.0262 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4250 | 40000 | 0.0238 | 0.0416 | 0.2464 | 0.5235 | 0.8004 | 0.4016 | 0.7418 | 0.4483 | 0.2915 | 0.5771 | 0.8538 | 0.2523 | 0.3536 | 0.6227 | 0.4967 | 0.5084 |
0.4463 | 42000 | 0.0253 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4675 | 44000 | 0.0224 | 0.0360 | 0.2080 | 0.5100 | 0.8317 | 0.3775 | 0.7223 | 0.4447 | 0.2789 | 0.5586 | 0.8324 | 0.3151 | 0.4005 | 0.6089 | 0.5119 | 0.5077 |
0.4888 | 46000 | 0.0225 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5100 | 48000 | 0.0209 | 0.0232 | 0.2386 | 0.5045 | 0.8204 | 0.3746 | 0.7390 | 0.4662 | 0.2963 | 0.5380 | 0.8580 | 0.3292 | 0.4010 | 0.6336 | 0.5214 | 0.5170 |
0.5313 | 50000 | 0.0225 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5525 | 52000 | 0.0205 | 0.0380 | 0.2237 | 0.5114 | 0.7952 | 0.3583 | 0.6979 | 0.4310 | 0.2816 | 0.5364 | 0.8747 | 0.2703 | 0.4009 | 0.5947 | 0.5038 | 0.4984 |
0.5738 | 54000 | 0.0204 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5950 | 56000 | 0.0204 | 0.0365 | 0.2316 | 0.4676 | 0.8134 | 0.3754 | 0.7280 | 0.4536 | 0.2927 | 0.5205 | 0.8662 | 0.2859 | 0.3589 | 0.6281 | 0.5069 | 0.5022 |
0.6163 | 58000 | 0.0199 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6376 | 60000 | 0.0196 | 0.0365 | 0.2233 | 0.4897 | 0.8149 | 0.3385 | 0.7395 | 0.4778 | 0.2725 | 0.5365 | 0.8610 | 0.2836 | 0.4031 | 0.5380 | 0.5146 | 0.4995 |
0.6588 | 62000 | 0.0187 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6801 | 64000 | 0.0184 | 0.0453 | 0.2333 | 0.4792 | 0.7881 | 0.3653 | 0.7402 | 0.5062 | 0.3008 | 0.5607 | 0.8922 | 0.2857 | 0.4039 | 0.5972 | 0.5217 | 0.5134 |
0.7013 | 66000 | 0.0182 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7226 | 68000 | 0.0162 | 0.0323 | 0.2341 | 0.4678 | 0.8283 | 0.3855 | 0.7567 | 0.5229 | 0.3297 | 0.5445 | 0.8909 | 0.2787 | 0.3917 | 0.5904 | 0.5115 | 0.5179 |
0.7438 | 70000 | 0.0195 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7651 | 72000 | 0.0181 | 0.0243 | 0.2082 | 0.4374 | 0.7487 | 0.4010 | 0.7245 | 0.4712 | 0.3179 | 0.5168 | 0.8721 | 0.2794 | 0.4312 | 0.5801 | 0.5129 | 0.5001 |
0.7863 | 74000 | 0.0171 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8076 | 76000 | 0.0164 | 0.0284 | 0.2153 | 0.4654 | 0.7985 | 0.4027 | 0.7528 | 0.4871 | 0.3267 | 0.5385 | 0.9092 | 0.2997 | 0.3852 | 0.5979 | 0.5001 | 0.5138 |
0.8288 | 78000 | 0.0169 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8501 | 80000 | 0.0168 | 0.0244 | 0.2032 | 0.4466 | 0.7855 | 0.4042 | 0.7396 | 0.4971 | 0.2946 | 0.5485 | 0.9071 | 0.2983 | 0.3919 | 0.5862 | 0.5149 | 0.5091 |
0.8713 | 82000 | 0.0144 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8926 | 84000 | 0.0155 | 0.0229 | 0.2262 | 0.4348 | 0.8076 | 0.403 | 0.7355 | 0.4857 | 0.3007 | 0.5619 | 0.9062 | 0.2913 | 0.4188 | 0.6443 | 0.5207 | 0.5182 |
0.9138 | 86000 | 0.0144 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9351 | 88000 | 0.0149 | 0.0211 | 0.2259 | 0.4212 | 0.8098 | 0.3938 | 0.7309 | 0.4665 | 0.3051 | 0.5301 | 0.9061 | 0.2881 | 0.4086 | 0.6390 | 0.5199 | 0.5111 |
0.9563 | 90000 | 0.013 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9776 | 92000 | 0.0143 | 0.0231 | 0.2288 | 0.4224 | 0.8176 | 0.4130 | 0.7332 | 0.4807 | 0.3033 | 0.5424 | 0.9007 | 0.2772 | 0.4215 | 0.6354 | 0.5170 | 0.5149 |
0.9988 | 94000 | 0.0129 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
-1 | -1 | - | - | 0.2262 | 0.4348 | 0.8076 | 0.4030 | 0.7355 | 0.4857 | 0.3007 | 0.5619 | 0.9062 | 0.2913 | 0.4188 | 0.6443 | 0.5207 | 0.5182 |
- The bold row denotes the saved checkpoint.
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 1.338 kWh
- Carbon Emitted: 0.520 kg of CO2
- Hours Used: 3.894 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 4.2.0.dev0
- Transformers: 4.49.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.1
- Datasets: 2.21.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
SpladeLoss
@misc{formal2022distillationhardnegativesampling,
title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
year={2022},
eprint={2205.04733},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2205.04733},
}
- Downloads last month
- 10
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for tomaarsen/splade-distilbert-base-uncased-gooaq
Base model
distilbert/distilbert-base-uncasedDataset used to train tomaarsen/splade-distilbert-base-uncased-gooaq
Evaluation results
- Dot Accuracy@1 on NanoClimateFEVERself-reported0.220
- Dot Accuracy@3 on NanoClimateFEVERself-reported0.380
- Dot Accuracy@5 on NanoClimateFEVERself-reported0.480
- Dot Accuracy@10 on NanoClimateFEVERself-reported0.540
- Dot Precision@1 on NanoClimateFEVERself-reported0.220
- Dot Precision@3 on NanoClimateFEVERself-reported0.133
- Dot Precision@5 on NanoClimateFEVERself-reported0.108
- Dot Precision@10 on NanoClimateFEVERself-reported0.066
- Dot Recall@1 on NanoClimateFEVERself-reported0.117
- Dot Recall@3 on NanoClimateFEVERself-reported0.171