splade-distilbert-base-uncased trained on GooAQ
This is a SPLADE Sparse Encoder model finetuned from distilbert/distilbert-base-uncased on the gooaq dataset using the sentence-transformers library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
Model Details
Model Description
- Model Type: SPLADE Sparse Encoder
- Base model: distilbert/distilbert-base-uncased
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 30522 dimensions
- Similarity Function: Dot Product
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Sparse Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sparse Encoders on Hugging Face
Full Model Architecture
SparseEncoder(
(0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'DistilBertForMaskedLM'})
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/splade-distilbert-base-uncased-gooaq")
# Run inference
queries = [
"how many days for doxycycline to work on sinus infection?",
]
documents = [
'Treatment of suspected bacterial infection is with antibiotics, such as amoxicillin/clavulanate or doxycycline, given for 5 to 7 days for acute sinusitis and for up to 6 weeks for chronic sinusitis.',
'Most engagements typically have a cocktail dress code, calling for dresses at, or slightly above, knee-length and high heels. If your party states a different dress code, however, such as semi-formal or dressy-casual, you may need to dress up or down accordingly.',
'The average service life of a gas furnace is about 15 years, but the actual life span of an individual unit can vary greatly. There are a number of contributing factors that determine the age a furnace reaches: The quality of the equipment.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 30522] [3, 30522]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[103.7028, 26.2666, 35.3421]])
Evaluation
Metrics
Sparse Information Retrieval
- Datasets:
NanoMSMARCO
,NanoNFCorpus
,NanoNQ
,NanoClimateFEVER
,NanoDBPedia
,NanoFEVER
,NanoFiQA2018
,NanoHotpotQA
,NanoMSMARCO
,NanoNFCorpus
,NanoNQ
,NanoQuoraRetrieval
,NanoSCIDOCS
,NanoArguAna
,NanoSciFact
andNanoTouche2020
- Evaluated with
SparseInformationRetrievalEvaluator
Metric | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
dot_accuracy@1 | 0.28 | 0.24 | 0.36 | 0.24 | 0.6 | 0.54 | 0.32 | 0.72 | 0.5 | 0.36 | 0.06 | 0.5 | 0.5714 |
dot_accuracy@3 | 0.56 | 0.46 | 0.6 | 0.44 | 0.78 | 0.78 | 0.48 | 0.78 | 0.74 | 0.54 | 0.38 | 0.58 | 0.8367 |
dot_accuracy@5 | 0.62 | 0.5 | 0.68 | 0.52 | 0.84 | 0.9 | 0.52 | 0.8 | 0.84 | 0.68 | 0.44 | 0.64 | 0.8776 |
dot_accuracy@10 | 0.72 | 0.58 | 0.76 | 0.62 | 0.9 | 0.9 | 0.62 | 0.92 | 0.96 | 0.76 | 0.5 | 0.7 | 0.9388 |
dot_precision@1 | 0.28 | 0.24 | 0.36 | 0.24 | 0.6 | 0.54 | 0.32 | 0.72 | 0.5 | 0.36 | 0.06 | 0.5 | 0.5714 |
dot_precision@3 | 0.1867 | 0.2933 | 0.2067 | 0.1533 | 0.4867 | 0.26 | 0.2133 | 0.4133 | 0.26 | 0.2467 | 0.1267 | 0.2067 | 0.5238 |
dot_precision@5 | 0.124 | 0.252 | 0.14 | 0.112 | 0.448 | 0.18 | 0.156 | 0.26 | 0.188 | 0.212 | 0.088 | 0.136 | 0.502 |
dot_precision@10 | 0.072 | 0.214 | 0.08 | 0.074 | 0.388 | 0.094 | 0.102 | 0.152 | 0.118 | 0.152 | 0.05 | 0.08 | 0.4388 |
dot_recall@1 | 0.28 | 0.0078 | 0.35 | 0.115 | 0.075 | 0.5167 | 0.1822 | 0.36 | 0.49 | 0.0757 | 0.06 | 0.465 | 0.0405 |
dot_recall@3 | 0.56 | 0.0392 | 0.58 | 0.2057 | 0.143 | 0.7267 | 0.2922 | 0.62 | 0.7067 | 0.1527 | 0.38 | 0.545 | 0.1132 |
dot_recall@5 | 0.62 | 0.066 | 0.65 | 0.254 | 0.1796 | 0.8367 | 0.3451 | 0.65 | 0.8013 | 0.2187 | 0.44 | 0.605 | 0.1732 |
dot_recall@10 | 0.72 | 0.0853 | 0.72 | 0.303 | 0.2627 | 0.8567 | 0.4614 | 0.76 | 0.9133 | 0.3137 | 0.5 | 0.69 | 0.2875 |
dot_ndcg@10 | 0.489 | 0.2395 | 0.5442 | 0.2509 | 0.4899 | 0.7043 | 0.3639 | 0.6876 | 0.7142 | 0.2977 | 0.2921 | 0.5783 | 0.4859 |
dot_mrr@10 | 0.416 | 0.3644 | 0.4959 | 0.3528 | 0.7127 | 0.6723 | 0.4092 | 0.7661 | 0.6458 | 0.4796 | 0.2237 | 0.5562 | 0.7082 |
dot_map@100 | 0.4301 | 0.0903 | 0.4945 | 0.1923 | 0.3807 | 0.6526 | 0.3017 | 0.6246 | 0.6499 | 0.2173 | 0.2347 | 0.5447 | 0.3646 |
query_active_dims | 111.46 | 156.66 | 103.9 | 240.48 | 159.22 | 211.28 | 103.12 | 132.78 | 63.4 | 247.56 | 477.06 | 280.32 | 61.8367 |
query_sparsity_ratio | 0.9963 | 0.9949 | 0.9966 | 0.9921 | 0.9948 | 0.9931 | 0.9966 | 0.9956 | 0.9979 | 0.9919 | 0.9844 | 0.9908 | 0.998 |
corpus_active_dims | 310.8414 | 505.3576 | 356.2113 | 398.2761 | 347.9973 | 428.2852 | 340.6042 | 392.0682 | 73.4578 | 424.1747 | 455.6429 | 451.0737 | 380.6023 |
corpus_sparsity_ratio | 0.9898 | 0.9834 | 0.9883 | 0.987 | 0.9886 | 0.986 | 0.9888 | 0.9872 | 0.9976 | 0.9861 | 0.9851 | 0.9852 | 0.9875 |
Sparse Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
SparseNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "msmarco", "nfcorpus", "nq" ] }
Metric | Value |
---|---|
dot_accuracy@1 | 0.2733 |
dot_accuracy@3 | 0.5 |
dot_accuracy@5 | 0.6 |
dot_accuracy@10 | 0.7067 |
dot_precision@1 | 0.2733 |
dot_precision@3 | 0.2111 |
dot_precision@5 | 0.1707 |
dot_precision@10 | 0.1247 |
dot_recall@1 | 0.1668 |
dot_recall@3 | 0.339 |
dot_recall@5 | 0.4169 |
dot_recall@10 | 0.5139 |
dot_ndcg@10 | 0.4032 |
dot_mrr@10 | 0.4111 |
dot_map@100 | 0.3021 |
query_active_dims | 141.7933 |
query_sparsity_ratio | 0.9954 |
corpus_active_dims | 381.7903 |
corpus_sparsity_ratio | 0.9875 |
Sparse Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
SparseNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "climatefever", "dbpedia", "fever", "fiqa2018", "hotpotqa", "msmarco", "nfcorpus", "nq", "quoraretrieval", "scidocs", "arguana", "scifact", "touche2020" ] }
Metric | Value |
---|---|
dot_accuracy@1 | 0.407 |
dot_accuracy@3 | 0.6121 |
dot_accuracy@5 | 0.6814 |
dot_accuracy@10 | 0.7599 |
dot_precision@1 | 0.407 |
dot_precision@3 | 0.2752 |
dot_precision@5 | 0.2152 |
dot_precision@10 | 0.155 |
dot_recall@1 | 0.2321 |
dot_recall@3 | 0.3896 |
dot_recall@5 | 0.4492 |
dot_recall@10 | 0.5287 |
dot_ndcg@10 | 0.4721 |
dot_mrr@10 | 0.5233 |
dot_map@100 | 0.3983 |
query_active_dims | 180.8814 |
query_sparsity_ratio | 0.9941 |
corpus_active_dims | 360.7381 |
corpus_sparsity_ratio | 0.9882 |
Training Details
Training Dataset
gooaq
- Dataset: gooaq at b089f72
- Size: 99,000 training samples
- Columns:
question
andanswer
- Approximate statistics based on the first 1000 samples:
question answer type string string details - min: 8 tokens
- mean: 11.79 tokens
- max: 24 tokens
- min: 14 tokens
- mean: 60.02 tokens
- max: 153 tokens
- Samples:
question answer what are the 5 characteristics of a star?
Key Concept: Characteristics used to classify stars include color, temperature, size, composition, and brightness.
are copic markers alcohol ink?
Copic Ink is alcohol-based and flammable. Keep away from direct sunlight and extreme temperatures.
what is the difference between appellate term and appellate division?
Appellate terms An appellate term is an intermediate appellate court that hears appeals from the inferior courts within their designated counties or judicial districts, and are intended to ease the workload on the Appellate Division and provide a less expensive forum closer to the people.
- Loss:
SpladeLoss
with these parameters:{ "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')", "document_regularizer_weight": 3e-05, "query_regularizer_weight": 5e-05 }
Evaluation Dataset
gooaq
- Dataset: gooaq at b089f72
- Size: 1,000 evaluation samples
- Columns:
question
andanswer
- Approximate statistics based on the first 1000 samples:
question answer type string string details - min: 8 tokens
- mean: 11.93 tokens
- max: 25 tokens
- min: 14 tokens
- mean: 60.84 tokens
- max: 127 tokens
- Samples:
question answer should you take ibuprofen with high blood pressure?
In general, people with high blood pressure should use acetaminophen or possibly aspirin for over-the-counter pain relief. Unless your health care provider has said it's OK, you should not use ibuprofen, ketoprofen, or naproxen sodium. If aspirin or acetaminophen doesn't help with your pain, call your doctor.
how old do you have to be to work in sc?
The general minimum age of employment for South Carolina youth is 14, although the state allows younger children who are performers to work in show business. If their families are agricultural workers, children younger than age 14 may also participate in farm labor.
how to write a topic proposal for a research paper?
['Write down the main topic of your paper. ... ', 'Write two or three short sentences under the main topic that explain why you chose that topic. ... ', 'Write a thesis sentence that states the angle and purpose of your research paper. ... ', 'List the items you will cover in the body of the paper that support your thesis statement.']
- Loss:
SpladeLoss
with these parameters:{ "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')", "document_regularizer_weight": 3e-05, "query_regularizer_weight": 5e-05 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32learning_rate
: 2e-05num_train_epochs
: 1bf16
: Trueload_best_model_at_end
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportionalrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 | NanoClimateFEVER_dot_ndcg@10 | NanoDBPedia_dot_ndcg@10 | NanoFEVER_dot_ndcg@10 | NanoFiQA2018_dot_ndcg@10 | NanoHotpotQA_dot_ndcg@10 | NanoQuoraRetrieval_dot_ndcg@10 | NanoSCIDOCS_dot_ndcg@10 | NanoArguAna_dot_ndcg@10 | NanoSciFact_dot_ndcg@10 | NanoTouche2020_dot_ndcg@10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0323 | 100 | 11.4443 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0646 | 200 | 0.2676 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0970 | 300 | 0.1639 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1293 | 400 | 0.1769 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1616 | 500 | 0.1593 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1939 | 600 | 0.1194 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1972 | 610 | - | 0.1080 | 0.4260 | 0.2314 | 0.4303 | 0.3626 | - | - | - | - | - | - | - | - | - | - |
0.2262 | 700 | 0.1351 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2586 | 800 | 0.109 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2909 | 900 | 0.1147 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3232 | 1000 | 0.0994 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3555 | 1100 | 0.0871 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3878 | 1200 | 0.0891 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3943 | 1220 | - | 0.0942 | 0.489 | 0.2395 | 0.5442 | 0.4242 | - | - | - | - | - | - | - | - | - | - |
0.4202 | 1300 | 0.09 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4525 | 1400 | 0.0902 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4848 | 1500 | 0.1046 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5171 | 1600 | 0.071 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5495 | 1700 | 0.0783 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5818 | 1800 | 0.0846 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5915 | 1830 | - | 0.0804 | 0.4745 | 0.2537 | 0.4780 | 0.4021 | - | - | - | - | - | - | - | - | - | - |
0.6141 | 1900 | 0.0572 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6464 | 2000 | 0.0712 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6787 | 2100 | 0.065 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7111 | 2200 | 0.096 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7434 | 2300 | 0.0764 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7757 | 2400 | 0.0722 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7886 | 2440 | - | 0.0716 | 0.4976 | 0.2348 | 0.4626 | 0.3983 | - | - | - | - | - | - | - | - | - | - |
0.8080 | 2500 | 0.0579 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8403 | 2600 | 0.0655 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8727 | 2700 | 0.0612 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9050 | 2800 | 0.0491 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9373 | 2900 | 0.0496 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9696 | 3000 | 0.0553 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9858 | 3050 | - | 0.0746 | 0.4990 | 0.2419 | 0.4688 | 0.4032 | - | - | - | - | - | - | - | - | - | - |
-1 | -1 | - | - | 0.4890 | 0.2395 | 0.5442 | 0.4721 | 0.2509 | 0.4899 | 0.7043 | 0.3639 | 0.6876 | 0.7142 | 0.2977 | 0.2921 | 0.5783 | 0.4859 |
- The bold row denotes the saved checkpoint.
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.039 kWh
- Carbon Emitted: 0.015 kg of CO2
- Hours Used: 0.154 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 4.2.0.dev0
- Transformers: 4.52.4
- PyTorch: 2.7.1+cu126
- Accelerate: 1.5.1
- Datasets: 2.21.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
SpladeLoss
@misc{formal2022distillationhardnegativesampling,
title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
year={2022},
eprint={2205.04733},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2205.04733},
}
SparseMultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
FlopsLoss
@article{paria2020minimizing,
title={Minimizing flops to learn efficient sparse representations},
author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
journal={arXiv preprint arXiv:2004.05665},
year={2020}
}
- Downloads last month
- 851
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for tomaarsen/splade-distilbert-base-uncased-gooaq
Base model
distilbert/distilbert-base-uncasedDataset used to train tomaarsen/splade-distilbert-base-uncased-gooaq
Evaluation results
- Dot Accuracy@1 on NanoMSMARCOself-reported0.280
- Dot Accuracy@3 on NanoMSMARCOself-reported0.500
- Dot Accuracy@5 on NanoMSMARCOself-reported0.580
- Dot Accuracy@10 on NanoMSMARCOself-reported0.740
- Dot Precision@1 on NanoMSMARCOself-reported0.280
- Dot Precision@3 on NanoMSMARCOself-reported0.167
- Dot Precision@5 on NanoMSMARCOself-reported0.116
- Dot Precision@10 on NanoMSMARCOself-reported0.074
- Dot Recall@1 on NanoMSMARCOself-reported0.280
- Dot Recall@3 on NanoMSMARCOself-reported0.500