YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)
model: opt-125m
config: IntxWeightOnlyConfig
config version: 1
torchao version: 0.14.dev
import logging

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig

# Configure logging to see warnings and debug information
logging.basicConfig(
    level=logging.INFO, format="%(name)s - %(levelname)s - %(message)s"
)

# Enable specific loggers that might contain the serialization warnings
logging.getLogger("transformers").setLevel(logging.INFO)
logging.getLogger("torchao").setLevel(logging.INFO)
logging.getLogger("safetensors").setLevel(logging.INFO)
logging.getLogger("huggingface_hub").setLevel(logging.INFO)

model_id = "facebook/opt-125m"

from torchao.quantization import IntxWeightOnlyConfig
from torchao.quantization.granularity import PerGroup

version = 1
quant_config = IntxWeightOnlyConfig(
    weight_dtype=torch.int4,
    granularity=PerGroup(32),
    version=version
)
quantization_config = TorchAoConfig(quant_type=quant_config)
quantized_model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16,
    quantization_config=quantization_config,
)
tokenizer = AutoTokenizer.from_pretrained(model_id)

# Push to hub
MODEL_NAME = model_id.split("/")[-1]
save_to = f"torchao-testing/{MODEL_NAME}-IntxWeightOnlyConfig-v{version}-0.14.0.dev-safetensors"
quantized_model.push_to_hub(save_to, safe_serialization=False)
tokenizer.push_to_hub(save_to)


# Manual Testing
prompt = "What are we having for dinner?"
print("Prompt:", prompt)
inputs = tokenizer(
    prompt,
    return_tensors="pt",
).to("cuda")

# Detting temperature to 0 to make sure result deterministic
generated_ids = quantized_model.generate(**inputs, max_new_tokens=128, temperature=0)

correct_output_text = tokenizer.batch_decode(
    generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print("Response:", correct_output_text[0][len(prompt) :])


# Load model from saved checkpoint
reloaded_model = AutoModelForCausalLM.from_pretrained(
    save_to,
    device_map="auto",
    torch_dtype=torch.bfloat16,
)

generated_ids = reloaded_model.generate(**inputs, max_new_tokens=128, temperature=0)
output_text = tokenizer.batch_decode(
    generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print("Response:", output_text[0][len(prompt) :])

assert(correct_output_text == output_text)
Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support