SentenceTransformer based on vinai/phobert-base-v2
This is a sentence-transformers model finetuned from vinai/phobert-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: vinai/phobert-base-v2
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("huudan123/model_stage1")
# Run inference
sentences = [
'cửa_hàng quà tặng ở chân cầu giữa hai tòa nhà cung_cấp một lựa_chọn tuyệt_vời về những kỷ_niệm chất_lượng bản_sao và áp_phích của văn_hóa_nara',
'Cửa_hàng quà tặng có rất nhiều kỷ_niệm tuyệt_vời của nara .',
'Cửa_hàng quà tặng chỉ bán kẹo và bánh_nướng .',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-evaluator - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.4482 |
| spearman_cosine | 0.498 |
| pearson_manhattan | 0.5665 |
| spearman_manhattan | 0.5734 |
| pearson_euclidean | 0.4874 |
| spearman_euclidean | 0.5022 |
| pearson_dot | 0.4108 |
| spearman_dot | 0.4286 |
| pearson_max | 0.5665 |
| spearman_max | 0.5734 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
overwrite_output_dir: Trueeval_strategy: epochper_device_train_batch_size: 128per_device_eval_batch_size: 128num_train_epochs: 15warmup_ratio: 0.1fp16: Trueload_best_model_at_end: Truegradient_checkpointing: True
All Hyperparameters
Click to expand
overwrite_output_dir: Truedo_predict: Falseeval_strategy: epochprediction_loss_only: Trueper_device_train_batch_size: 128per_device_eval_batch_size: 128per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 15max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Truegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | loss | sts-evaluator_spearman_cosine |
|---|---|---|---|---|
| 0 | 0 | - | - | 0.6643 |
| 0.6258 | 500 | 2.6454 | - | - |
| 1.0 | 799 | - | 1.4970 | 0.5082 |
| 1.2516 | 1000 | 1.6242 | - | - |
| 1.8773 | 1500 | 1.4441 | - | - |
| 2.0 | 1598 | - | 1.3278 | 0.5658 |
| 2.5031 | 2000 | 1.1204 | - | - |
| 3.0 | 2397 | - | 1.2538 | 0.5397 |
| 3.1289 | 2500 | 0.973 | - | - |
| 3.7547 | 3000 | 0.7077 | - | - |
| 4.0 | 3196 | - | 1.2978 | 0.5151 |
| 4.3805 | 3500 | 0.5556 | - | - |
| 5.0 | 3995 | - | 1.3334 | 0.5034 |
| 5.0063 | 4000 | 0.4768 | - | - |
| 5.6320 | 4500 | 0.3041 | - | - |
| 6.0 | 4794 | - | 1.3129 | 0.4992 |
| 6.2578 | 5000 | 0.2762 | - | - |
| 6.8836 | 5500 | 0.2116 | - | - |
| 7.0 | 5593 | - | 1.3389 | 0.4980 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.33.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
TripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- 1
Model tree for tranhuudan-fullstack-ai-engineer/model_stage1
Evaluation results
- Pearson Cosine on sts evaluatorself-reported0.448
- Spearman Cosine on sts evaluatorself-reported0.498
- Pearson Manhattan on sts evaluatorself-reported0.567
- Spearman Manhattan on sts evaluatorself-reported0.573
- Pearson Euclidean on sts evaluatorself-reported0.487
- Spearman Euclidean on sts evaluatorself-reported0.502
- Pearson Dot on sts evaluatorself-reported0.411
- Spearman Dot on sts evaluatorself-reported0.429
- Pearson Max on sts evaluatorself-reported0.567
- Spearman Max on sts evaluatorself-reported0.573