SentenceTransformer based on huudan123/model_stage2_latest
This is a sentence-transformers model finetuned from huudan123/model_stage2_latest. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: huudan123/model_stage2_latest
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("huudan123/model_stage3_latest")
# Run inference
sentences = [
'Tôi có thể nghĩ ra ba yếu tố chính là những phỏng đoán khá logic.',
'Đã có khá nhiều nghiên cứu trong bóng đá / bóng đá thảo luận về lợi thế sân nhà.',
'Cô gái đang đứng trước cánh cửa mở của xe buýt.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-evaluator - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.8455 |
| spearman_cosine | 0.8455 |
| pearson_manhattan | 0.8362 |
| spearman_manhattan | 0.8436 |
| pearson_euclidean | 0.836 |
| spearman_euclidean | 0.8435 |
| pearson_dot | 0.8302 |
| spearman_dot | 0.8289 |
| pearson_max | 0.8455 |
| spearman_max | 0.8455 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
overwrite_output_dir: Trueeval_strategy: epochper_device_train_batch_size: 128per_device_eval_batch_size: 128learning_rate: 3e-05weight_decay: 0.01num_train_epochs: 15warmup_ratio: 0.1fp16: Trueload_best_model_at_end: Truegradient_checkpointing: True
All Hyperparameters
Click to expand
overwrite_output_dir: Truedo_predict: Falseeval_strategy: epochprediction_loss_only: Trueper_device_train_batch_size: 128per_device_eval_batch_size: 128per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 3e-05weight_decay: 0.01adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 15max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Truegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseeval_use_gather_object: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | loss | sts-evaluator_spearman_max |
|---|---|---|---|---|
| 0 | 0 | - | - | 0.6849 |
| 0.5556 | 25 | 0.0801 | - | - |
| 1.0 | 45 | - | 0.0390 | 0.7990 |
| 1.1111 | 50 | 0.0388 | - | - |
| 1.6667 | 75 | 0.0309 | - | - |
| 2.0 | 90 | - | 0.0315 | 0.8401 |
| 2.2222 | 100 | 0.0264 | - | - |
| 2.7778 | 125 | 0.0222 | - | - |
| 3.0 | 135 | - | 0.0302 | 0.8412 |
| 3.3333 | 150 | 0.0188 | - | - |
| 3.8889 | 175 | 0.0164 | - | - |
| 4.0 | 180 | - | 0.0300 | 0.8411 |
| 4.4444 | 200 | 0.0138 | - | - |
| 5.0 | 225 | 0.0135 | 0.0291 | 0.8446 |
| 5.5556 | 250 | 0.011 | - | - |
| 6.0 | 270 | - | 0.0291 | 0.8458 |
| 6.1111 | 275 | 0.0104 | - | - |
| 6.6667 | 300 | 0.0093 | - | - |
| 7.0 | 315 | - | 0.0280 | 0.8479 |
| 7.2222 | 325 | 0.0088 | - | - |
| 7.7778 | 350 | 0.0081 | - | - |
| 8.0 | 360 | - | 0.0285 | 0.848 |
| 8.3333 | 375 | 0.0075 | - | - |
| 8.8889 | 400 | 0.0071 | - | - |
| 9.0 | 405 | - | 0.0285 | 0.8463 |
| 9.4444 | 425 | 0.0066 | - | - |
| 10.0 | 450 | 0.0066 | 0.0287 | 0.8455 |
| 10.5556 | 475 | 0.0062 | - | - |
| 11.0 | 495 | - | 0.0285 | 0.8458 |
| 11.1111 | 500 | 0.0058 | - | - |
| 11.6667 | 525 | 0.0056 | - | - |
| 12.0 | 540 | - | 0.0291 | 0.8452 |
| 12.2222 | 550 | 0.0055 | - | - |
| 12.7778 | 575 | 0.0053 | - | - |
| 13.0 | 585 | - | 0.0289 | 0.8455 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.44.0
- PyTorch: 2.4.0+cu121
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 2
Model tree for tranhuudan-fullstack-ai-engineer/model_stage3_latest
Base model
vinai/phobert-base-v2Evaluation results
- Pearson Cosine on sts evaluatorself-reported0.845
- Spearman Cosine on sts evaluatorself-reported0.846
- Pearson Manhattan on sts evaluatorself-reported0.836
- Spearman Manhattan on sts evaluatorself-reported0.844
- Pearson Euclidean on sts evaluatorself-reported0.836
- Spearman Euclidean on sts evaluatorself-reported0.843
- Pearson Dot on sts evaluatorself-reported0.830
- Spearman Dot on sts evaluatorself-reported0.829
- Pearson Max on sts evaluatorself-reported0.845
- Spearman Max on sts evaluatorself-reported0.846