Revela
Collection
8 items
•
Updated
Revela is a self-supervised bi-encoder retrieval model, trained on raw text with an in-batch attention mechanism. This version, Revela-1b
was trained on a corpus of 320K batches in the size of 16 by chunking Wikipedia. See the paper for more details.
Binary | Description |
---|---|
trumancai/Revela-500M | A Revela dense-retriever bi-encoder based on Qwen2.5-0.5B (500 M parameters), trained on the same Wikipedia corpus. |
trumancai/Revela-135M | A compact Revela retriever using SmolLM2-135 M (135 M parameters), self-supervised on Wikipedia for efficient general retrieval. |
trumancai/Revela-code-1b | A Revela code retriever built on LLaMA-3.2-1B (1 B parameters), self-supervised on the Revela code training corpus (Stack Overflow posts, tutorials, library docs) for code-search tasks. |
trumancai/Revela-code-500M | A Revela code retriever based on Qwen2.5-0.5B (500 M parameters), trained on the same code corpus for software-domain retrieval. |
trumancai/Revela-code-135M | A lightweight Revela code retriever using SmolLM2-135 M (135 M parameters), self-supervised on code corpora for resource-constrained code-search scenarios. |
trumancai/revela_training_corpus | Wikipedia Training Corpus: English Wikipedia passages segmented into ≤ 120-word chunks and grouped into batches of 16 (320 k batches) for general-domain Revela training. |
trumancai/revela_code_training_corpus | Code Training Corpus: Code-centric chunks (358 763 batches) drawn from Stack Overflow posts, online tutorials and library documentation, batched identically for Revela code retrievers. |
We can evaluate the trained models with customized mteb.
from mteb.model_meta import ModelMeta
from mteb.models.repllama_models import RepLLaMAWrapper, _loader
revela_llama_1b = ModelMeta(
loader=_loader(
RepLLaMAWrapper,
base_model_name_or_path="meta-llama/Llama-3.2-1B",
peft_model_name_or_path="trumancai/Revela-1b",
device_map="auto",
torch_dtype=torch.bfloat16,
),
name="trumancai/Revela-1b",
languages=["eng_Latn"],
open_source=True,
revision="41a2bd8968d2640e1e386861776c48bdaac1306a", # base-peft revision
release_date="2025-04-13",
)
revela_llama_1b_model = revela_llama_1b.loader()
evaluation = mteb.MTEB(tasks=["SciFact", "NFCorpus"])
evaluation.run(model=revela_llama_1b_model, output_folder="results/Revela-1b")
Base model
meta-llama/Llama-3.2-1B