YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Title: GR00T N1.5 β€” Finetuned on SO101 Table Cleanup

This is a finetuned GR00T N1.5 policy trained using LeRobot on the SO101 task: so101-table-cleanup.

============================ πŸ“¦ Model Details

  • Model Type: GR00T N1.5 (Diffusion Policy)
  • Backbone: NVEagle/eagle_er-qwen3_1_7B-Siglip2_400M_stage1_5_128gpu_er_v7_1mlp_nops
  • Action Horizon: 16 steps
  • Action Dim: 32
  • Input Embedding Dim: 1536
  • Vision Tokens: 32
  • Checkpoint Steps: 20000
  • Format: safetensors (sharded)

============================ πŸ“ Files

  • config.json --> Model and backbone configuration
  • model-00001-of-00002.safetensors
  • model-00002-of-00002.safetensors
  • model.safetensors.index.json --> Index for sharded weights
  • training_args.bin --> Hugging Face Trainer arguments
  • trainer_state.json --> Trainer state for resuming
  • README.md --> This file
  • experiment_cfg/ --> (optional) extra configs used during training

============================ 🧠 Intended Use

This model is designed for manipulation in table cleanup tasks using 5 camera views and a GR00T diffusion policy. It is trained on the SO101 dataset and can be used for inference or further fine-tuning.

============================ πŸ§ͺ How to Use (Python)

Load with Hugging Face Transformers

from transformers import AutoModel, AutoConfig

model_id = "tshiamor-none/so101-gr00t-n1_5" config = AutoConfig.from_pretrained(model_id) model = AutoModel.from_pretrained(model_id, config=config)

You can now use model(...) with the correct input dictionary

Alternatively, in LeRobot:

python scripts/load_dataset.py
--dataset-path ./demo_data/so101-table-cleanup
--model-path tshiamor-none/so101-gr00t-n1_5
--plot-state-action

============================ πŸ” Resume Training

To resume training from step 10000 to 20000: python scripts/gr00t_finetune.py
--dataset-path ./demo_data/so101-table-cleanup
--output-dir ./so101-checkpoints
--num-gpus 1
--max-steps 20000
--batch-size 1
--resume-from-checkpoint ./so101-checkpoints/checkpoint-10000
--data-config so101_5cam
--video-backend torchvision_av
--dataloader-num-workers 0

============================ πŸ”’ License

MIT License

============================ ✍️ Citation

If you use this model, consider citing:

@misc{lerobot2024, title={LeRobot: Open Foundation Models for Robotics}, author={Hugging Face et al.}, year={2024}, url={https://huggingface.co/lerobot} }

Downloads last month
6
Safetensors
Model size
2.72B params
Tensor type
F32
Β·
BF16
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support