Edit model card

wav2vec2-live-japanese

https://github.com/ttop32/wav2vec2-live-japanese-translator
Fine-tuned facebook/wav2vec2-large-xlsr-53 on Japanese hiragana using the

Inference

#usage
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
model = Wav2Vec2ForCTC.from_pretrained("ttop324/wav2vec2-live-japanese")
processor = Wav2Vec2Processor.from_pretrained("ttop324/wav2vec2-live-japanese")
test_dataset = load_dataset("common_voice", "ja", split="test")
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = torchaudio.functional.resample(speech_array, sampling_rate, 16000)[0].numpy()    
    return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset[:2]["sentence"])

Evaluation

import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
import pykakasi 
import MeCab
wer = load_metric("wer")
cer = load_metric("cer")
model = Wav2Vec2ForCTC.from_pretrained("ttop324/wav2vec2-live-japanese").to("cuda")
processor = Wav2Vec2Processor.from_pretrained("ttop324/wav2vec2-live-japanese")
test_dataset = load_dataset("common_voice", "ja", split="test")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\‘\”\�‘、。.!,・―─~「」『』\\\\※\[\]\{\}「」〇?…]'
wakati = MeCab.Tagger("-Owakati")
kakasi = pykakasi.kakasi()
kakasi.setMode("J","H")      # kanji to hiragana
kakasi.setMode("K","H")      # katakana to hiragana
conv = kakasi.getConverter()
FULLWIDTH_TO_HALFWIDTH = str.maketrans(
    ' 0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!゛#$%&()*+、ー。/:;〈=〉?@[]^_‘{|}~',
    ' 0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&()*+,-./:;<=>?@[]^_`{|}~',
)
def fullwidth_to_halfwidth(s):
    return s.translate(FULLWIDTH_TO_HALFWIDTH)
def preprocessData(batch):
    batch["sentence"] = fullwidth_to_halfwidth(batch["sentence"])
    batch["sentence"] = re.sub(chars_to_ignore_regex,' ', batch["sentence"]).lower()  #remove special char
    batch["sentence"] = wakati.parse(batch["sentence"])                              #add space
    batch["sentence"] = conv.do(batch["sentence"])                                   #covert to hiragana
    batch["sentence"] = " ".join(batch["sentence"].split())+" "                         #remove multiple space 
    
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = torchaudio.functional.resample(speech_array, sampling_rate, 16000)[0].numpy()    
    return batch
test_dataset = test_dataset.map(preprocessData)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
    inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
    with torch.no_grad():
        logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
print("CER: {:2f}".format(100 * cer.compute(predictions=result["pred_strings"], references=result["sentence"])))
Downloads last month
17
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train ttop324/wav2vec2-live-japanese

Evaluation results