ik_llama.cpp
imatrix Quantizations of moonshotai/Kimi-K2-Instruct-0905
This quant collection REQUIRES ik_llama.cpp fork to support the ik's latest SOTA quants and optimizations! Do not download these big files and expect them to run on mainline vanilla llama.cpp, ollama, LM Studio, KoboldCpp, etc!
NOTE ik_llama.cpp
can also run your existing GGUFs from bartowski, unsloth, mradermacher, etc if you want to try it out before downloading my quants.
Some of ik's new quants are supported with Nexesenex/croco.cpp fork of KoboldCPP. For pre-built Windows binaries of ik_llama.cpp check out Thireus' fork here.
These quants provide best in class perplexity for the given memory footprint.
Big Thanks
Shout out to Wendell and the Level1Techs crew, the community Forums, YouTube Channel! BIG thanks for providing BIG hardware expertise and access to run these experiments and make these great quants available to the community!!!
Also thanks to all the folks in the quanting and inferencing community on BeaverAI Club Discord and on r/LocalLLaMA for tips and tricks helping each other run, test, and benchmark all the fun new models!
Notes
- The current imatrix dat file seems to be missing entries for just the single dense layer and shared expert so all my recipes are using
q8_0
for those. - For notes on tool calling api endpoints checkout details from this PR: https://github.com/ikawrakow/ik_llama.cpp/pull/723
smol
here simply means the routed experts recipe uses the same quantization for down as well as (gate|up) tensors.
Quant Collection
Compare with baseline perplexity of full size Q8_0
1016.117 GiB (8.504 BPW)
Final estimate: PPL = 2.4443 +/- 0.01175
smol-IQ5_KS
632.664 GiB (5.295 BPW)
Final estimate: PPL = 2.4526 +/- 0.01182
๐ Secret Recipe
#!/usr/bin/env bash
custom="
## Attention [0-60] (GPU)
blk\..*\.attn_k_b\.weight=q8_0
blk\..*\.attn_v_b\.weight=q8_0
# Balance of attn tensors
blk\..*\.attn_kv_a_mqa\.weight=q8_0
blk\..*\.attn_q_a\.weight=q8_0
blk\..*\.attn_q_b\.weight=q8_0
blk\..*\.attn_output\.weight=q8_0
## First Single Dense Layer [0] (GPU)
blk\..*\.ffn_down\.weight=q8_0
blk\..*\.ffn_(gate|up)\.weight=q8_0
## Shared Expert [1-60] (GPU)
blk\..*\.ffn_down_shexp\.weight=q8_0
blk\..*\.ffn_(gate|up)_shexp\.weight=q8_0
## Routed Experts [1-60] (CPU)
blk\..*\.ffn_down_exps\.weight=iq5_ks
blk\..*\.ffn_(gate|up)_exps\.weight=iq5_ks
## Token embedding and output tensors (GPU)
token_embd\.weight=iq6_k
output\.weight=iq6_k
"
custom=$(
echo "$custom" | grep -v '^#' | \
sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)
numactl -N 0 -m 0 \
./build/bin/llama-quantize \
--custom-q "$custom" \
--imatrix /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/imatrix-Kimi-K2-Instruct-0905-Q8_0.dat \
/mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-384x14B-Instruct-safetensors-0905-BF16-00001-of-00046.gguf \
/mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-Instruct-0905-smol-IQ5_KS.gguf \
IQ5_KS \
192
smol-IQ4_KSS
485.008 GiB (4.059 BPW)
Final estimate: PPL = 2.5185 +/- 0.01221
๐ Secret Recipe
#!/usr/bin/env bash
custom="
## Attention [0-60] (GPU)
blk\..*\.attn_k_b\.weight=q8_0
blk\..*\.attn_v_b\.weight=q8_0
# Balance of attn tensors
blk\..*\.attn_kv_a_mqa\.weight=q8_0
blk\..*\.attn_q_a\.weight=q8_0
blk\..*\.attn_q_b\.weight=q8_0
blk\..*\.attn_output\.weight=q8_0
## First Single Dense Layer [0] (GPU)
blk\..*\.ffn_down\.weight=q8_0
blk\..*\.ffn_(gate|up)\.weight=q8_0
## Shared Expert [1-60] (GPU)
blk\..*\.ffn_down_shexp\.weight=q8_0
blk\..*\.ffn_(gate|up)_shexp\.weight=q8_0
## Routed Experts [1-60] (CPU)
blk\..*\.ffn_down_exps\.weight=iq4_kss
blk\..*\.ffn_(gate|up)_exps\.weight=iq4_kss
## Token embedding and output tensors (GPU)
token_embd\.weight=iq6_k
output\.weight=iq6_k
"
custom=$(
echo "$custom" | grep -v '^#' | \
sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)
numactl -N 0 -m 0 \
./build/bin/llama-quantize \
--custom-q "$custom" \
--imatrix /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/imatrix-Kimi-K2-Instruct-0905-Q8_0.dat \
/mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-384x14B-Instruct-safetensors-0905-BF16-00001-of-00046.gguf \
/mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-Instruct-0905-smol-IQ4_KSS.gguf \
IQ4_KSS \
192
IQ4_KS
553.624 GiB (4.633 BPW)
Final estimate: PPL = 2.4641 +/- 0.01190
๐ Secret Recipe
#!/usr/bin/env bash
custom="
## Attention [0-60] (GPU)
blk\..*\.attn_k_b\.weight=q8_0
blk\..*\.attn_v_b\.weight=q8_0
# Balance of attn tensors
blk\..*\.attn_kv_a_mqa\.weight=q8_0
blk\..*\.attn_q_a\.weight=q8_0
blk\..*\.attn_q_b\.weight=q8_0
blk\..*\.attn_output\.weight=q8_0
## First Single Dense Layer [0] (GPU)
blk\..*\.ffn_down\.weight=q8_0
blk\..*\.ffn_(gate|up)\.weight=q8_0
## Shared Expert [1-60] (GPU)
blk\..*\.ffn_down_shexp\.weight=q8_0
blk\..*\.ffn_(gate|up)_shexp\.weight=q8_0
## Routed Experts [1-60] (CPU)
blk\..*\.ffn_down_exps\.weight=iq5_ks
blk\..*\.ffn_(gate|up)_exps\.weight=iq4_ks
## Token embedding and output tensors (GPU)
token_embd\.weight=iq4_k
output\.weight=iq6_k
"
custom=$(
echo "$custom" | grep -v '^#' | \
sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)
numactl -N 1 -m 1 \
./build/bin/llama-quantize \
--custom-q "$custom" \
--imatrix /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/imatrix-Kimi-K2-Instruct-0905-Q8_0.dat \
/mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-384x14B-Instruct-safetensors-0905-BF16-00001-of-00046.gguf \
/mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-Instruct-0905-IQ4_KS.gguf \
IQ4_KS \
192
IQ3_KS
420.558 GiB (3.520 BPW)
Final estimate: PPL = 2.5640 +/- 0.01262
๐ Secret Recipe
#!/usr/bin/env bash
custom="
## Attention [0-60] (GPU)
blk\..*\.attn_k_b\.weight=q8_0
blk\..*\.attn_v_b\.weight=q8_0
# Balance of attn tensors
blk\..*\.attn_kv_a_mqa\.weight=q8_0
blk\..*\.attn_q_a\.weight=q8_0
blk\..*\.attn_q_b\.weight=q8_0
blk\..*\.attn_output\.weight=q8_0
## First Single Dense Layer [0] (GPU)
blk\..*\.ffn_down\.weight=q8_0
blk\..*\.ffn_(gate|up)\.weight=q8_0
## Shared Expert [1-60] (GPU)
blk\..*\.ffn_down_shexp\.weight=q8_0
blk\..*\.ffn_(gate|up)_shexp\.weight=q8_0
## Routed Experts [1-60] (CPU)
blk\..*\.ffn_down_exps\.weight=iq4_kss
blk\..*\.ffn_(gate|up)_exps\.weight=iq3_ks
## Token embedding and output tensors (GPU)
token_embd\.weight=iq4_k
output\.weight=iq6_k
"
custom=$(
echo "$custom" | grep -v '^#' | \
sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)
numactl -N 0 -m 0 \
./build/bin/llama-quantize \
--custom-q "$custom" \
--imatrix /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/imatrix-Kimi-K2-Instruct-0905-Q8_0.dat \
/mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-384x14B-Instruct-safetensors-0905-BF16-00001-of-00046.gguf \
/mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-Instruct-0905-IQ3_KS.gguf \
IQ3_KS \
192
smol-IQ3_KS
388.258 GiB (3.249 BPW)
Final estimate: PPL = 2.5902 +/- 0.01284
๐ Secret Recipe
#!/usr/bin/env bash
custom="
## Attention [0-60] (GPU)
blk\..*\.attn_k_b\.weight=q8_0
blk\..*\.attn_v_b\.weight=q8_0
# Balance of attn tensors
blk\..*\.attn_kv_a_mqa\.weight=q8_0
blk\..*\.attn_q_a\.weight=q8_0
blk\..*\.attn_q_b\.weight=q8_0
blk\..*\.attn_output\.weight=q8_0
## First Single Dense Layer [0] (GPU)
blk\..*\.ffn_down\.weight=q8_0
blk\..*\.ffn_(gate|up)\.weight=q8_0
## Shared Expert [1-60] (GPU)
blk\..*\.ffn_down_shexp\.weight=q8_0
blk\..*\.ffn_(gate|up)_shexp\.weight=q8_0
## Routed Experts [1-60] (CPU)
blk\..*\.ffn_down_exps\.weight=iq3_ks
blk\..*\.ffn_(gate|up)_exps\.weight=iq3_ks
## Token embedding and output tensors (GPU)
token_embd\.weight=iq4_k
output\.weight=iq6_k
"
custom=$(
echo "$custom" | grep -v '^#' | \
sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)
numactl -N 0 -m 0 \
./build/bin/llama-quantize \
--custom-q "$custom" \
--imatrix /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/imatrix-Kimi-K2-Instruct-0905-Q8_0.dat \
/mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-384x14B-Instruct-safetensors-0905-BF16-00001-of-00046.gguf \
/mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-Instruct-0905-smol-IQ3_KS.gguf \
IQ3_KS \
192
IQ2_KL
358.419 GiB (3.000 BPW)
Final estimate: PPL = 2.7993 +/- 0.01416
๐ Secret Recipe
#!/usr/bin/env bash
custom="
## Attention [0-60] (GPU)
blk\..*\.attn_k_b\.weight=q8_0
blk\..*\.attn_v_b\.weight=q8_0
# Balance of attn tensors
blk\..*\.attn_kv_a_mqa\.weight=q8_0
blk\..*\.attn_q_a\.weight=q8_0
blk\..*\.attn_q_b\.weight=q8_0
blk\..*\.attn_output\.weight=q8_0
## First Single Dense Layer [0] (GPU)
blk\..*\.ffn_down\.weight=q8_0
blk\..*\.ffn_(gate|up)\.weight=q8_0
## Shared Expert [1-60] (GPU)
blk\..*\.ffn_down_shexp\.weight=q8_0
blk\..*\.ffn_(gate|up)_shexp\.weight=q8_0
## Routed Experts [1-60] (CPU)
blk\..*\.ffn_down_exps\.weight=iq3_k
blk\..*\.ffn_(gate|up)_exps\.weight=iq2_kl
## Token embedding and output tensors (GPU)
token_embd\.weight=iq4_k
output\.weight=iq6_k
"
custom=$(
echo "$custom" | grep -v '^#' | \
sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)
numactl -N 0 -m 0 \
./build/bin/llama-quantize \
--custom-q "$custom" \
--imatrix /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/imatrix-Kimi-K2-Instruct-0905-Q8_0.dat \
/mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-384x14B-Instruct-safetensors-0905-BF16-00001-of-00046.gguf \
/mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-Instruct-0905-IQ2_KL.gguf \
IQ2_KL \
192
smol-IQ2_KL
329.195 GiB (2.755 BPW)
Final estimate: PPL = 2.9294 +/- 0.01499
๐ Secret Recipe
#!/usr/bin/env bash
custom="
## Attention [0-60] (GPU)
blk\..*\.attn_k_b\.weight=q8_0
blk\..*\.attn_v_b\.weight=q8_0
# Balance of attn tensors
blk\..*\.attn_kv_a_mqa\.weight=q8_0
blk\..*\.attn_q_a\.weight=q8_0
blk\..*\.attn_q_b\.weight=q8_0
blk\..*\.attn_output\.weight=q8_0
## First Single Dense Layer [0] (GPU)
blk\..*\.ffn_down\.weight=q8_0
blk\..*\.ffn_(gate|up)\.weight=q8_0
## Shared Expert [1-60] (GPU)
blk\..*\.ffn_down_shexp\.weight=q8_0
blk\..*\.ffn_(gate|up)_shexp\.weight=q8_0
## Routed Experts [1-60] (CPU)
blk\..*\.ffn_down_exps\.weight=iq2_kl
blk\..*\.ffn_(gate|up)_exps\.weight=iq2_kl
## Token embedding and output tensors (GPU)
token_embd\.weight=iq4_k
output\.weight=iq6_k
"
custom=$(
echo "$custom" | grep -v '^#' | \
sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)
numactl -N 1 -m 1 \
./build/bin/llama-quantize \
--custom-q "$custom" \
--imatrix /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/imatrix-Kimi-K2-Instruct-0905-Q8_0.dat \
/mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-384x14B-Instruct-safetensors-0905-BF16-00001-of-00046.gguf \
/mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-Instruct-0905-smol-IQ2_KL.gguf \
IQ2_KL \
192
IQ2_KS
289.820 GiB (2.425 BPW)
Final estimate: PPL = 3.2478 +/- 0.01721
๐ Secret Recipe
#!/usr/bin/env bash
custom="
## Attention [0-60] (GPU)
blk\..*\.attn_k_b\.weight=q8_0
blk\..*\.attn_v_b\.weight=q8_0
# Balance of attn tensors
blk\..*\.attn_kv_a_mqa\.weight=q8_0
blk\..*\.attn_q_a\.weight=q8_0
blk\..*\.attn_q_b\.weight=q8_0
blk\..*\.attn_output\.weight=q8_0
## First Single Dense Layer [0] (GPU)
blk\..*\.ffn_down\.weight=q8_0
blk\..*\.ffn_(gate|up)\.weight=q8_0
## Shared Expert [1-60] (GPU)
blk\..*\.ffn_down_shexp\.weight=q8_0
blk\..*\.ffn_(gate|up)_shexp\.weight=q8_0
## Routed Experts [1-60] (CPU)
blk\..*\.ffn_down_exps\.weight=iq2_kl
blk\..*\.ffn_(gate|up)_exps\.weight=iq2_ks
## Token embedding and output tensors (GPU)
token_embd\.weight=iq4_k
output\.weight=iq6_k
"
custom=$(
echo "$custom" | grep -v '^#' | \
sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)
numactl -N 1 -m 1 \
./build/bin/llama-quantize \
--custom-q "$custom" \
--imatrix /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/imatrix-Kimi-K2-Instruct-0905-Q8_0.dat \
/mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-384x14B-Instruct-safetensors-0905-BF16-00001-of-00046.gguf \
/mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-Instruct-0905-IQ2_KS.gguf \
IQ2_KS \
192
smol-IQ2_KS
270.133 GiB (2.261 BPW)
Final estimate: PPL = 3.4977 +/- 0.01924
๐ Secret Recipe
#!/usr/bin/env bash
custom="
## Attention [0-60] (GPU)
blk\..*\.attn_k_b\.weight=q8_0
blk\..*\.attn_v_b\.weight=q8_0
# Balance of attn tensors
blk\..*\.attn_kv_a_mqa\.weight=q8_0
blk\..*\.attn_q_a\.weight=q8_0
blk\..*\.attn_q_b\.weight=q8_0
blk\..*\.attn_output\.weight=q8_0
## First Single Dense Layer [0] (GPU)
blk\..*\.ffn_down\.weight=q8_0
blk\..*\.ffn_(gate|up)\.weight=q8_0
## Shared Expert [1-60] (GPU)
blk\..*\.ffn_down_shexp\.weight=q8_0
blk\..*\.ffn_(gate|up)_shexp\.weight=q8_0
## Routed Experts [1-60] (CPU)
blk\..*\.ffn_down_exps\.weight=iq2_ks
blk\..*\.ffn_(gate|up)_exps\.weight=iq2_ks
## Token embedding and output tensors (GPU)
token_embd\.weight=iq4_k
output\.weight=iq6_k
"
custom=$(
echo "$custom" | grep -v '^#' | \
sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)
numactl -N 0 -m 0 \
./build/bin/llama-quantize \
--custom-q "$custom" \
--imatrix /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/imatrix-Kimi-K2-Instruct-0905-Q8_0.dat \
/mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-384x14B-Instruct-safetensors-0905-BF16-00001-of-00046.gguf \
/mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-Instruct-0905-smol-IQ2_KS.gguf \
IQ2_KS \
192
smol-IQ1_KT
218.936 GiB (1.832 BPW)
Final estimate: PPL = 4.2224 +/- 0.02443
๐ Secret Recipe
#!/usr/bin/env bash
custom="
## Attention [0-60] (GPU)
blk\..*\.attn_k_b\.weight=q8_0
blk\..*\.attn_v_b\.weight=q8_0
# Balance of attn tensors
blk\..*\.attn_kv_a_mqa\.weight=q8_0
blk\..*\.attn_q_a\.weight=q8_0
blk\..*\.attn_q_b\.weight=q8_0
blk\..*\.attn_output\.weight=q8_0
## First Single Dense Layer [0] (GPU)
blk\..*\.ffn_down\.weight=q8_0
blk\..*\.ffn_(gate|up)\.weight=q8_0
## Shared Expert [1-60] (GPU)
blk\..*\.ffn_down_shexp\.weight=q8_0
blk\..*\.ffn_(gate|up)_shexp\.weight=q8_0
## Routed Experts [1-60] (CPU)
blk\..*\.ffn_down_exps\.weight=iq1_kt
blk\..*\.ffn_(gate|up)_exps\.weight=iq1_kt
## Token embedding and output tensors (GPU)
token_embd\.weight=iq4_k
output\.weight=iq6_k
"
custom=$(
echo "$custom" | grep -v '^#' | \
sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)
numactl -N 0 -m 0 \
./build/bin/llama-quantize \
--custom-q "$custom" \
--imatrix /mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/imatrix-Kimi-K2-Instruct-0905-Q8_0.dat \
/mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-384x14B-Instruct-safetensors-0905-BF16-00001-of-00046.gguf \
/mnt/data/models/ubergarm/Kimi-K2-Instruct-0905-GGUF/Kimi-K2-Instruct-0905-smol-IQ1_KT.gguf \
IQ1_KT \
192
Example Commands
Hybrid (multiple) CUDA + CPU
# Two CUDA devices with enough VRAM to offload more layers
# Keep in mind Kimi-K2 starts at 1 unlike DeepSeek at 3 (first dense layers)
./build/bin/llama-server \
--model "$model"\
--alias ubergarm/Kimi-K2-Instruct-0905 \
--ctx-size 32768 \
-ctk q8_0 \
-fa -fmoe \
-mla 3 \
-ngl 99 \
-ot "blk\.(1|2|3)\.ffn_.*=CUDA0" \
-ot "blk\.(4|5|6)\.ffn_.*=CUDA1" \
-ot exps=CPU \
--parallel 1 \
--threads 48 \
--threads-batch 64 \
--host 127.0.0.1 \
--port 8080
CPU-Only (no GPU)
# compile
cmake -B build -DGGML_CUDA=0 -DGGML_BLAS=0 -DGGML_VULKAN=0
cmake --build build --config Release -j $(nproc)
# run server
# single CPU of a dual socket rig configured one NUMA per socket
numactl -N 0 -m 0 \
./build/bin/llama-server \
--model "$model"\
--alias ubergarm/Kimi-K2-Instruct-0905 \
--ctx-size 98304 \
-ctk q8_0 \
-fa -fmoe \
-mla 3 \
--parallel 1 \
--threads 128 \
--threads-batch 192 \
--numa numactl \
--host 127.0.0.1 \
--port 8080
References
- Downloads last month
- 8,618
2-bit
Model tree for ubergarm/Kimi-K2-Instruct-0905-GGUF
Base model
moonshotai/Kimi-K2-Instruct-0905