mate
Collection
Grammar Error Correction models from the TSD 2025 paper Refining Czech GEC: Insights from a Multi-Experiment Approach
•
5 items
•
Updated
The byt5-large-geccc-mate model is a sequence-to-sequence model performing
grammar error correction in Czech described in the paper
Refining Czech GEC: Insights from a Multi-Experiment Approach.
It is a finetuned version of byt5-large using
the MATE method and the GECCC dataset.
google/byt5-large| Model | Parameters | GECCC F-0.5 score | AKCES F-0.5 score |
|---|---|---|---|
| byt5-small-geccc-mate | 300M | 72.56 | |
| byt5-base-geccc-mate | 582M | 75.15 | |
| byt5-large-geccc-mate | 1275M | 77.01 | |
| byt5-large-akces-mate | 1275M | 84.40 | |
| transformer-base-geccc-mate | 65M | 73.73 |
The model can be directly used to process space-tokenized input Czech text and produce grammar-corrected Czech text.
Use the code below to get started with the model. Note that the input must be space-tokenized, i.e., every token (using the UDPipe 1 tokenizer czech-pdt-ud-2.5-191206.udpipe) must be space-separated.
tokenizer = transformers.AutoTokenizer.from_pretrained("ufal/byt5-large-geccc-mate")
model = transformers.AutoModelForSeq2SeqLM.from_pretrained("ufal/byt5-large-geccc-mate")
batch = tokenizer(["Sveřepý šakali zavile vyly na býlí mesýc ."], return_tensors="pt")
outputs = model.generate(batch.input_ids, max_length=256, num_beams=4)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
@InProceedings{10.1007/978-3-032-02551-7_7,
author="Pechman, Petr and Straka, Milan and Strakov{\'a}, Jana and N{\'a}plava, Jakub",
editor="Ek{\v{s}}tein, Kamil and Konop{\'i}k, Miloslav and Pra{\v{z}}{\'a}k, Ond{\v{r}}ej and P{\'a}rtl, Franti{\v{s}}ek",
title="Refining Czech GEC: Insights from a Multi-experiment Approach",
booktitle="Text, Speech, and Dialogue",
year="2026",
publisher="Springer Nature Switzerland",
address="Cham",
pages="64--76",
isbn="978-3-032-02551-7",
doi="10.1007/978-3-032-02551-7_7"
}
Base model
google/byt5-large