Built with Axolotl

See axolotl config

axolotl version: 0.8.0.dev0

base_model: nvidia/Llama-3.1-Nemotron-70B-Instruct-HF
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: ugaoo/transformed_short_answer_dataset_prompt
    type: alpaca
val_set_size: 0
output_dir: ./out/transformed_short_answer_dataset_prompt_Nemotron

sequence_len: 4000
sample_packing: true
pad_to_sequence_len: true

adapter: qlora
lora_r: 256
lora_alpha: 512
lora_dropout: 0.05
lora_target_linear: true
lora_target_modules:
  - q_proj
  - k_proj
  - v_proj
  - o_proj
  - up_proj
  - down_proj
  - gate_proj
lora_modules_to_save:
  - embed_tokens
  - lm_head
 
wandb_project: cosmosearch
wandb_entity:
wandb_watch: 
wandb_name: transformed_short_answer_dataset_prompt_Nemotron
wandb_log_model:

gradient_accumulation_steps: 3
micro_batch_size: 4
num_epochs: 6
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 5e-6

train_on_inputs: false
group_by_length: false
bf16: auto
fp16: false
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 100
evals_per_epoch: 6
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
save_total_limit: 6
special_tokens:
   pad_token: <|end_of_text|>

out/transformed_short_answer_dataset_prompt_Nemotron

This model is a fine-tuned version of nvidia/Llama-3.1-Nemotron-70B-Instruct-HF on the ugaoo/transformed_short_answer_dataset_prompt dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 3
  • total_train_batch_size: 48
  • total_eval_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 6.0

Training results

Framework versions

  • PEFT 0.14.0
  • Transformers 4.49.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.1
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for ugaoo/nvidiallama