ner-btc

This model is a fine-tuned version of distilbert/distilbert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4142
  • Precision: 0.5949
  • Recall: 0.6021
  • F1: 0.5985
  • Accuracy: 0.9297

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 56 0.2800 0.4550 0.4854 0.4697 0.9137
No log 2.0 112 0.2701 0.5275 0.5918 0.5578 0.9250
No log 3.0 168 0.2836 0.5364 0.6072 0.5696 0.9248
No log 4.0 224 0.3103 0.5953 0.5626 0.5785 0.9287
No log 5.0 280 0.3210 0.5794 0.5883 0.5838 0.9284
No log 6.0 336 0.3376 0.5574 0.5832 0.5700 0.9254
No log 7.0 392 0.3717 0.6014 0.5849 0.5930 0.9304
No log 8.0 448 0.3788 0.6017 0.6038 0.6027 0.9297
0.0751 9.0 504 0.3832 0.5972 0.5901 0.5936 0.9296
0.0751 10.0 560 0.3943 0.5686 0.5969 0.5824 0.9265
0.0751 11.0 616 0.3914 0.6042 0.5969 0.6005 0.9306
0.0751 12.0 672 0.4034 0.5892 0.6003 0.5947 0.9286
0.0751 13.0 728 0.4093 0.5963 0.6003 0.5983 0.9297
0.0751 14.0 784 0.4122 0.5973 0.6003 0.5988 0.9294
0.0751 15.0 840 0.4142 0.5949 0.6021 0.5985 0.9297

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
37
Safetensors
Model size
65.2M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for vd-77/ner-btc

Finetuned
(262)
this model