multilingual-e5-base-edu-scorer-lr3e4-bs32

This model is a fine-tuned version of intfloat/multilingual-e5-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0854
  • Precision: 0.4959
  • Recall: 0.3633
  • F1 Macro: 0.3589
  • Accuracy: 0.3909

Model description

More information needed

Intended uses & limitations

More information needed

Test results

Binary classification accuracy (threshold at label 3) โ‰ˆ 82.00%

Test Report:

              precision    recall  f1-score   support

           0       0.81      0.42      0.55       100
           1       0.30      0.34      0.32       100
           2       0.36      0.55      0.44       100
           3       0.32      0.55      0.41       100
           4       0.43      0.26      0.32       100
           5       0.75      0.06      0.11        50

    accuracy                           0.39       550
   macro avg       0.50      0.36      0.36       550
weighted avg       0.47      0.39      0.38       550

Confusion Matrix:

[[42 45 10  2  1  0]
 [10 34 38 17  1  0]
 [ 0 24 55 21  0  0]
 [ 0  6 27 55 12  0]
 [ 0  2 18 53 26  1]
 [ 0  1  3 22 21  3]]

Test metrics

  epoch                   =       20.0
  eval_accuracy           =     0.3909
  eval_f1_macro           =     0.3589
  eval_loss               =     1.0854
  eval_precision          =     0.4959
  eval_recall             =     0.3633
  eval_runtime            = 0:00:05.35
  eval_samples_per_second =    102.729
  eval_steps_per_second   =      3.362

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Macro Accuracy
No log 0 0 3.1979 0.0587 0.1667 0.0869 0.3524
0.788 0.3368 1000 0.7656 0.4083 0.3366 0.3319 0.4744
0.7595 0.6736 2000 0.7674 0.4107 0.3293 0.3194 0.4378
0.7858 1.0104 3000 0.9050 0.4264 0.2889 0.2769 0.4908
0.8086 1.3473 4000 0.7185 0.4152 0.3450 0.3437 0.4842
0.7441 1.6841 5000 0.7373 0.4055 0.3347 0.3297 0.455
0.7725 2.0209 6000 0.7261 0.4190 0.3488 0.3463 0.4696
0.7339 2.3577 7000 0.7775 0.3969 0.3423 0.3450 0.5168
0.7256 2.6945 8000 0.7042 0.4018 0.3581 0.3608 0.5058
0.6947 3.0313 9000 0.7011 0.4093 0.3528 0.3520 0.492
0.6911 3.3681 10000 0.6902 0.4211 0.3554 0.3536 0.5078
0.6966 3.7050 11000 0.6893 0.4131 0.3591 0.3602 0.5018
0.7511 4.0418 12000 0.7161 0.3995 0.3431 0.3449 0.5196
0.6848 4.3786 13000 0.6771 0.4144 0.3656 0.3661 0.5114
0.6837 4.7154 14000 0.6807 0.4017 0.3523 0.3539 0.522
0.6755 5.0522 15000 0.6824 0.4033 0.3512 0.3529 0.5154
0.6759 5.3890 16000 0.6775 0.4029 0.3616 0.3619 0.5186
0.678 5.7258 17000 0.6773 0.4111 0.3552 0.3499 0.4952
0.656 6.0626 18000 0.6745 0.5747 0.3821 0.3902 0.518
0.6639 6.3995 19000 0.6655 0.4072 0.3626 0.3618 0.5188
0.6982 6.7363 20000 0.6723 0.4023 0.3615 0.3618 0.51
0.6286 7.0731 21000 0.6849 0.4157 0.3541 0.3565 0.5288
0.6191 7.4099 22000 0.6646 0.4197 0.3694 0.3695 0.517
0.6338 7.7467 23000 0.6879 0.4192 0.3589 0.3601 0.5272
0.6744 8.0835 24000 0.7007 0.4348 0.3456 0.3462 0.5248
0.6241 8.4203 25000 0.6631 0.4148 0.3680 0.3694 0.5286
0.6361 8.7572 26000 0.6732 0.4172 0.3553 0.3551 0.5236
0.6326 9.0940 27000 0.6729 0.4073 0.3657 0.3669 0.526
0.6072 9.4308 28000 0.6578 0.4149 0.3717 0.3738 0.5166
0.6539 9.7676 29000 0.6636 0.4165 0.3584 0.3596 0.526
0.6353 10.1044 30000 0.6615 0.4359 0.3817 0.3865 0.5246
0.6018 10.4412 31000 0.6612 0.4663 0.3828 0.3890 0.5166
0.609 10.7780 32000 0.6718 0.4172 0.3612 0.3624 0.5316
0.6027 11.1149 33000 0.6944 0.4655 0.3924 0.3995 0.5
0.6006 11.4517 34000 0.6739 0.4235 0.3551 0.3569 0.526
0.5649 11.7885 35000 0.6651 0.4379 0.3763 0.3819 0.522
0.5799 12.1253 36000 0.6574 0.4128 0.3661 0.3681 0.519
0.577 12.4621 37000 0.6555 0.4187 0.3717 0.3712 0.5274
0.5935 12.7989 38000 0.7002 0.4236 0.3755 0.3761 0.4846
0.5726 13.1357 39000 0.6885 0.4202 0.3796 0.3812 0.4986
0.5966 13.4725 40000 0.6773 0.4242 0.3811 0.3838 0.5058
0.5923 13.8094 41000 0.6599 0.4103 0.3598 0.3594 0.5218
0.5922 14.1462 42000 0.6677 0.4348 0.3807 0.3840 0.5154
0.574 14.4830 43000 0.6891 0.4173 0.3565 0.3567 0.533
0.5791 14.8198 44000 0.6604 0.4111 0.3740 0.3764 0.526
0.5699 15.1566 45000 0.6624 0.4074 0.3705 0.3719 0.5212
0.5476 15.4934 46000 0.6730 0.4113 0.3546 0.3539 0.5272
0.5963 15.8302 47000 0.6700 0.4097 0.3622 0.3636 0.5302
0.5678 16.1671 48000 0.6608 0.4102 0.3622 0.3621 0.5242
0.5599 16.5039 49000 0.6739 0.4114 0.3590 0.3598 0.5294
0.5458 16.8407 50000 0.6613 0.4135 0.3672 0.3687 0.5274
0.5157 17.1775 51000 0.6742 0.4032 0.3588 0.3597 0.5282
0.5649 17.5143 52000 0.6614 0.4036 0.3661 0.3672 0.5166
0.5729 17.8511 53000 0.6627 0.4018 0.3632 0.3645 0.5096
0.5705 18.1879 54000 0.6613 0.4076 0.3656 0.3667 0.522
0.5329 18.5248 55000 0.6601 0.4103 0.3665 0.3685 0.5196
0.551 18.8616 56000 0.6615 0.4162 0.3675 0.3692 0.5262
0.5571 19.1984 57000 0.6643 0.4113 0.3662 0.3680 0.528
0.5443 19.5352 58000 0.6620 0.4104 0.3660 0.3680 0.5228
0.5463 19.8720 59000 0.6614 0.4078 0.3677 0.3692 0.5186

Framework versions

  • Transformers 4.53.2
  • Pytorch 2.7.1+cu126
  • Datasets 4.0.0
  • Tokenizers 0.21.2
Downloads last month
83
Safetensors
Model size
278M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for versae/multilingual-e5-base-edu-scorer-lr3e4-bs32

Finetuned
(83)
this model