multilingual-e5-base-edu-scorer-lr3e4-bs32
This model is a fine-tuned version of intfloat/multilingual-e5-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.0854
- Precision: 0.4959
- Recall: 0.3633
- F1 Macro: 0.3589
- Accuracy: 0.3909
Model description
More information needed
Intended uses & limitations
More information needed
Test results
Binary classification accuracy (threshold at label 3) โ 82.00%
Test Report:
precision recall f1-score support
0 0.81 0.42 0.55 100
1 0.30 0.34 0.32 100
2 0.36 0.55 0.44 100
3 0.32 0.55 0.41 100
4 0.43 0.26 0.32 100
5 0.75 0.06 0.11 50
accuracy 0.39 550
macro avg 0.50 0.36 0.36 550
weighted avg 0.47 0.39 0.38 550
Confusion Matrix:
[[42 45 10 2 1 0]
[10 34 38 17 1 0]
[ 0 24 55 21 0 0]
[ 0 6 27 55 12 0]
[ 0 2 18 53 26 1]
[ 0 1 3 22 21 3]]
Test metrics
epoch = 20.0
eval_accuracy = 0.3909
eval_f1_macro = 0.3589
eval_loss = 1.0854
eval_precision = 0.4959
eval_recall = 0.3633
eval_runtime = 0:00:05.35
eval_samples_per_second = 102.729
eval_steps_per_second = 3.362
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 Macro | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0 | 0 | 3.1979 | 0.0587 | 0.1667 | 0.0869 | 0.3524 |
0.788 | 0.3368 | 1000 | 0.7656 | 0.4083 | 0.3366 | 0.3319 | 0.4744 |
0.7595 | 0.6736 | 2000 | 0.7674 | 0.4107 | 0.3293 | 0.3194 | 0.4378 |
0.7858 | 1.0104 | 3000 | 0.9050 | 0.4264 | 0.2889 | 0.2769 | 0.4908 |
0.8086 | 1.3473 | 4000 | 0.7185 | 0.4152 | 0.3450 | 0.3437 | 0.4842 |
0.7441 | 1.6841 | 5000 | 0.7373 | 0.4055 | 0.3347 | 0.3297 | 0.455 |
0.7725 | 2.0209 | 6000 | 0.7261 | 0.4190 | 0.3488 | 0.3463 | 0.4696 |
0.7339 | 2.3577 | 7000 | 0.7775 | 0.3969 | 0.3423 | 0.3450 | 0.5168 |
0.7256 | 2.6945 | 8000 | 0.7042 | 0.4018 | 0.3581 | 0.3608 | 0.5058 |
0.6947 | 3.0313 | 9000 | 0.7011 | 0.4093 | 0.3528 | 0.3520 | 0.492 |
0.6911 | 3.3681 | 10000 | 0.6902 | 0.4211 | 0.3554 | 0.3536 | 0.5078 |
0.6966 | 3.7050 | 11000 | 0.6893 | 0.4131 | 0.3591 | 0.3602 | 0.5018 |
0.7511 | 4.0418 | 12000 | 0.7161 | 0.3995 | 0.3431 | 0.3449 | 0.5196 |
0.6848 | 4.3786 | 13000 | 0.6771 | 0.4144 | 0.3656 | 0.3661 | 0.5114 |
0.6837 | 4.7154 | 14000 | 0.6807 | 0.4017 | 0.3523 | 0.3539 | 0.522 |
0.6755 | 5.0522 | 15000 | 0.6824 | 0.4033 | 0.3512 | 0.3529 | 0.5154 |
0.6759 | 5.3890 | 16000 | 0.6775 | 0.4029 | 0.3616 | 0.3619 | 0.5186 |
0.678 | 5.7258 | 17000 | 0.6773 | 0.4111 | 0.3552 | 0.3499 | 0.4952 |
0.656 | 6.0626 | 18000 | 0.6745 | 0.5747 | 0.3821 | 0.3902 | 0.518 |
0.6639 | 6.3995 | 19000 | 0.6655 | 0.4072 | 0.3626 | 0.3618 | 0.5188 |
0.6982 | 6.7363 | 20000 | 0.6723 | 0.4023 | 0.3615 | 0.3618 | 0.51 |
0.6286 | 7.0731 | 21000 | 0.6849 | 0.4157 | 0.3541 | 0.3565 | 0.5288 |
0.6191 | 7.4099 | 22000 | 0.6646 | 0.4197 | 0.3694 | 0.3695 | 0.517 |
0.6338 | 7.7467 | 23000 | 0.6879 | 0.4192 | 0.3589 | 0.3601 | 0.5272 |
0.6744 | 8.0835 | 24000 | 0.7007 | 0.4348 | 0.3456 | 0.3462 | 0.5248 |
0.6241 | 8.4203 | 25000 | 0.6631 | 0.4148 | 0.3680 | 0.3694 | 0.5286 |
0.6361 | 8.7572 | 26000 | 0.6732 | 0.4172 | 0.3553 | 0.3551 | 0.5236 |
0.6326 | 9.0940 | 27000 | 0.6729 | 0.4073 | 0.3657 | 0.3669 | 0.526 |
0.6072 | 9.4308 | 28000 | 0.6578 | 0.4149 | 0.3717 | 0.3738 | 0.5166 |
0.6539 | 9.7676 | 29000 | 0.6636 | 0.4165 | 0.3584 | 0.3596 | 0.526 |
0.6353 | 10.1044 | 30000 | 0.6615 | 0.4359 | 0.3817 | 0.3865 | 0.5246 |
0.6018 | 10.4412 | 31000 | 0.6612 | 0.4663 | 0.3828 | 0.3890 | 0.5166 |
0.609 | 10.7780 | 32000 | 0.6718 | 0.4172 | 0.3612 | 0.3624 | 0.5316 |
0.6027 | 11.1149 | 33000 | 0.6944 | 0.4655 | 0.3924 | 0.3995 | 0.5 |
0.6006 | 11.4517 | 34000 | 0.6739 | 0.4235 | 0.3551 | 0.3569 | 0.526 |
0.5649 | 11.7885 | 35000 | 0.6651 | 0.4379 | 0.3763 | 0.3819 | 0.522 |
0.5799 | 12.1253 | 36000 | 0.6574 | 0.4128 | 0.3661 | 0.3681 | 0.519 |
0.577 | 12.4621 | 37000 | 0.6555 | 0.4187 | 0.3717 | 0.3712 | 0.5274 |
0.5935 | 12.7989 | 38000 | 0.7002 | 0.4236 | 0.3755 | 0.3761 | 0.4846 |
0.5726 | 13.1357 | 39000 | 0.6885 | 0.4202 | 0.3796 | 0.3812 | 0.4986 |
0.5966 | 13.4725 | 40000 | 0.6773 | 0.4242 | 0.3811 | 0.3838 | 0.5058 |
0.5923 | 13.8094 | 41000 | 0.6599 | 0.4103 | 0.3598 | 0.3594 | 0.5218 |
0.5922 | 14.1462 | 42000 | 0.6677 | 0.4348 | 0.3807 | 0.3840 | 0.5154 |
0.574 | 14.4830 | 43000 | 0.6891 | 0.4173 | 0.3565 | 0.3567 | 0.533 |
0.5791 | 14.8198 | 44000 | 0.6604 | 0.4111 | 0.3740 | 0.3764 | 0.526 |
0.5699 | 15.1566 | 45000 | 0.6624 | 0.4074 | 0.3705 | 0.3719 | 0.5212 |
0.5476 | 15.4934 | 46000 | 0.6730 | 0.4113 | 0.3546 | 0.3539 | 0.5272 |
0.5963 | 15.8302 | 47000 | 0.6700 | 0.4097 | 0.3622 | 0.3636 | 0.5302 |
0.5678 | 16.1671 | 48000 | 0.6608 | 0.4102 | 0.3622 | 0.3621 | 0.5242 |
0.5599 | 16.5039 | 49000 | 0.6739 | 0.4114 | 0.3590 | 0.3598 | 0.5294 |
0.5458 | 16.8407 | 50000 | 0.6613 | 0.4135 | 0.3672 | 0.3687 | 0.5274 |
0.5157 | 17.1775 | 51000 | 0.6742 | 0.4032 | 0.3588 | 0.3597 | 0.5282 |
0.5649 | 17.5143 | 52000 | 0.6614 | 0.4036 | 0.3661 | 0.3672 | 0.5166 |
0.5729 | 17.8511 | 53000 | 0.6627 | 0.4018 | 0.3632 | 0.3645 | 0.5096 |
0.5705 | 18.1879 | 54000 | 0.6613 | 0.4076 | 0.3656 | 0.3667 | 0.522 |
0.5329 | 18.5248 | 55000 | 0.6601 | 0.4103 | 0.3665 | 0.3685 | 0.5196 |
0.551 | 18.8616 | 56000 | 0.6615 | 0.4162 | 0.3675 | 0.3692 | 0.5262 |
0.5571 | 19.1984 | 57000 | 0.6643 | 0.4113 | 0.3662 | 0.3680 | 0.528 |
0.5443 | 19.5352 | 58000 | 0.6620 | 0.4104 | 0.3660 | 0.3680 | 0.5228 |
0.5463 | 19.8720 | 59000 | 0.6614 | 0.4078 | 0.3677 | 0.3692 | 0.5186 |
Framework versions
- Transformers 4.53.2
- Pytorch 2.7.1+cu126
- Datasets 4.0.0
- Tokenizers 0.21.2
- Downloads last month
- 83
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for versae/multilingual-e5-base-edu-scorer-lr3e4-bs32
Base model
intfloat/multilingual-e5-base